This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a monomial into a finite product of powers of variables. Instead of assuming that R is a commutative ring (as in mplcoe2 ), it is sufficient that R is a ring and all the variables of the multivariate polynomial commute. (Contributed by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplcoe2.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | ||
| mplcoe2.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| mplcoe2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mplcoe5.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplcoe5.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | ||
| mplcoe5.c | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | ||
| Assertion | mplcoe5 | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplcoe2.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | |
| 7 | mplcoe2.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 8 | mplcoe2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 9 | mplcoe5.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mplcoe5.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | |
| 11 | mplcoe5.c | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | |
| 12 | 2 | psrbag | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
| 14 | 10 13 | mpbid | ⊢ ( 𝜑 → ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) |
| 15 | 14 | simpld | ⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 16 | 15 | feqmptd | ⊢ ( 𝜑 → 𝑌 = ( 𝑖 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑖 ) ) ) |
| 17 | iftrue | ⊢ ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 19 | eldif | ⊢ ( 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) ) | |
| 20 | fcdmnn0supp | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑌 : 𝐼 ⟶ ℕ0 ) → ( 𝑌 supp 0 ) = ( ◡ 𝑌 “ ℕ ) ) | |
| 21 | 5 15 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 supp 0 ) = ( ◡ 𝑌 “ ℕ ) ) |
| 22 | eqimss | ⊢ ( ( 𝑌 supp 0 ) = ( ◡ 𝑌 “ ℕ ) → ( 𝑌 supp 0 ) ⊆ ( ◡ 𝑌 “ ℕ ) ) | |
| 23 | 21 22 | syl | ⊢ ( 𝜑 → ( 𝑌 supp 0 ) ⊆ ( ◡ 𝑌 “ ℕ ) ) |
| 24 | c0ex | ⊢ 0 ∈ V | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 26 | 15 23 5 25 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑌 ‘ 𝑖 ) = 0 ) |
| 27 | 26 | ifeq2d | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , ( 𝑌 ‘ 𝑖 ) ) = if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 28 | ifid | ⊢ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , ( 𝑌 ‘ 𝑖 ) ) = ( 𝑌 ‘ 𝑖 ) | |
| 29 | 27 28 | eqtr3di | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 30 | 19 29 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ 𝐼 ∧ ¬ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 31 | 30 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 32 | 18 31 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 33 | 32 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑖 ) ) ) |
| 34 | 16 33 | eqtr4d | ⊢ ( 𝜑 → 𝑌 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
| 35 | 34 | eqeq2d | ⊢ ( 𝜑 → ( 𝑦 = 𝑌 ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
| 36 | 35 | ifbid | ⊢ ( 𝜑 → if ( 𝑦 = 𝑌 , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
| 37 | 36 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
| 38 | cnvimass | ⊢ ( ◡ 𝑌 “ ℕ ) ⊆ dom 𝑌 | |
| 39 | 38 15 | fssdm | ⊢ ( 𝜑 → ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 ) |
| 40 | 14 | simprd | ⊢ ( 𝜑 → ( ◡ 𝑌 “ ℕ ) ∈ Fin ) |
| 41 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼 ) ) | |
| 42 | noel | ⊢ ¬ 𝑖 ∈ ∅ | |
| 43 | eleq2 | ⊢ ( 𝑤 = ∅ → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ∅ ) ) | |
| 44 | 42 43 | mtbiri | ⊢ ( 𝑤 = ∅ → ¬ 𝑖 ∈ 𝑤 ) |
| 45 | 44 | iffalsed | ⊢ ( 𝑤 = ∅ → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = 0 ) |
| 46 | 45 | mpteq2dv | ⊢ ( 𝑤 = ∅ → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) ) |
| 47 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑖 ∈ 𝐼 ↦ 0 ) | |
| 48 | 46 47 | eqtr4di | ⊢ ( 𝑤 = ∅ → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝐼 × { 0 } ) ) |
| 49 | 48 | eqeq2d | ⊢ ( 𝑤 = ∅ → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝐼 × { 0 } ) ) ) |
| 50 | 49 | ifbid | ⊢ ( 𝑤 = ∅ → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) |
| 51 | 50 | mpteq2dv | ⊢ ( 𝑤 = ∅ → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 52 | mpteq1 | ⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ∅ ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) | |
| 53 | mpt0 | ⊢ ( 𝑘 ∈ ∅ ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ∅ | |
| 54 | 52 53 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ∅ ) |
| 55 | 54 | oveq2d | ⊢ ( 𝑤 = ∅ → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ∅ ) ) |
| 56 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 57 | 6 56 | ringidval | ⊢ ( 1r ‘ 𝑃 ) = ( 0g ‘ 𝐺 ) |
| 58 | 57 | gsum0 | ⊢ ( 𝐺 Σg ∅ ) = ( 1r ‘ 𝑃 ) |
| 59 | 55 58 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 1r ‘ 𝑃 ) ) |
| 60 | 51 59 | eqeq12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) |
| 61 | 41 60 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( ∅ ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) ) |
| 62 | 61 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) ) ) |
| 63 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐼 ↔ 𝑥 ⊆ 𝐼 ) ) | |
| 64 | eleq2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ 𝑥 ) ) | |
| 65 | 64 | ifbid | ⊢ ( 𝑤 = 𝑥 → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 66 | 65 | mpteq2dv | ⊢ ( 𝑤 = 𝑥 → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
| 67 | 66 | eqeq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
| 68 | 67 | ifbid | ⊢ ( 𝑤 = 𝑥 → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
| 69 | 68 | mpteq2dv | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
| 70 | mpteq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) | |
| 71 | 70 | oveq2d | ⊢ ( 𝑤 = 𝑥 → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 72 | 69 71 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
| 73 | 63 72 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 74 | 73 | imbi2d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 75 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑤 ⊆ 𝐼 ↔ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) | |
| 76 | eleq2 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ) ) | |
| 77 | 76 | ifbid | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 78 | 77 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
| 79 | 78 | eqeq2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
| 80 | 79 | ifbid | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
| 81 | 80 | mpteq2dv | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
| 82 | mpteq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) | |
| 83 | 82 | oveq2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 84 | 81 83 | eqeq12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
| 85 | 75 84 | imbi12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 86 | 85 | imbi2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 87 | sseq1 | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑤 ⊆ 𝐼 ↔ ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 ) ) | |
| 88 | eleq2 | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑖 ∈ 𝑤 ↔ 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) ) ) | |
| 89 | 88 | ifbid | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 90 | 89 | mpteq2dv | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
| 91 | 90 | eqeq2d | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
| 92 | 91 | ifbid | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
| 93 | 92 | mpteq2dv | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
| 94 | mpteq1 | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) | |
| 95 | 94 | oveq2d | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 96 | 93 95 | eqeq12d | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
| 97 | 87 96 | imbi12d | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ↔ ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 98 | 97 | imbi2d | ⊢ ( 𝑤 = ( ◡ 𝑌 “ ℕ ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑤 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑤 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 99 | 1 2 3 4 56 5 9 | mpl1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 100 | 99 56 | eqtr3di | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) |
| 101 | 100 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = ( 1r ‘ 𝑃 ) ) ) |
| 102 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) | |
| 103 | sstr2 | ⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → 𝑥 ⊆ 𝐼 ) ) | |
| 104 | 102 103 | ax-mp | ⊢ ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → 𝑥 ⊆ 𝐼 ) |
| 105 | 104 | imim1i | ⊢ ( ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
| 106 | oveq1 | ⊢ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) | |
| 107 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 108 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝐼 ∈ 𝑊 ) |
| 109 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑅 ∈ Ring ) |
| 110 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 111 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ) |
| 112 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 113 | ifcl | ⊢ ( ( ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℕ0 ) | |
| 114 | 111 112 113 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℕ0 ) |
| 115 | 114 | fmpttd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
| 116 | fcdmnn0supp | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) = ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ) | |
| 117 | 108 115 116 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) = ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ) |
| 118 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑥 ∈ Fin ) | |
| 119 | eldifn | ⊢ ( 𝑖 ∈ ( 𝐼 ∖ 𝑥 ) → ¬ 𝑖 ∈ 𝑥 ) | |
| 120 | 119 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝑥 ) ) → ¬ 𝑖 ∈ 𝑥 ) |
| 121 | 120 | iffalsed | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ ( 𝐼 ∖ 𝑥 ) ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) = 0 ) |
| 122 | 121 108 | suppss2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) ⊆ 𝑥 ) |
| 123 | 118 122 | ssfid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) supp 0 ) ∈ Fin ) |
| 124 | 117 123 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) |
| 125 | 2 | psrbag | ⊢ ( 𝐼 ∈ 𝑊 → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
| 126 | 108 125 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
| 127 | 115 124 126 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∈ 𝐷 ) |
| 128 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 129 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑥 ∪ { 𝑧 } ) | |
| 130 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) | |
| 131 | 129 130 | sstrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → { 𝑧 } ⊆ 𝐼 ) |
| 132 | vex | ⊢ 𝑧 ∈ V | |
| 133 | 132 | snss | ⊢ ( 𝑧 ∈ 𝐼 ↔ { 𝑧 } ⊆ 𝐼 ) |
| 134 | 131 133 | sylibr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑧 ∈ 𝐼 ) |
| 135 | 110 134 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 136 | 2 | snifpsrbag | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ∈ 𝐷 ) |
| 137 | 108 135 136 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ∈ 𝐷 ) |
| 138 | 1 107 3 4 2 108 109 127 128 137 | mplmonmul | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) , 1 , 0 ) ) ) |
| 139 | 1 2 3 4 108 6 7 8 109 134 135 | mplcoe3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) |
| 140 | 139 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) , 1 , 0 ) ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
| 141 | 135 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 142 | ifcl | ⊢ ( ( ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ∧ 0 ∈ ℕ0 ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ∈ ℕ0 ) | |
| 143 | 141 112 142 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ∈ ℕ0 ) |
| 144 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) | |
| 145 | eqidd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) | |
| 146 | 108 114 143 144 145 | offval2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) ) |
| 147 | 111 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌 ‘ 𝑖 ) ∈ ℕ0 ) |
| 148 | 147 | nn0cnd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌 ‘ 𝑖 ) ∈ ℂ ) |
| 149 | 148 | addlidd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 0 + ( 𝑌 ‘ 𝑖 ) ) = ( 𝑌 ‘ 𝑖 ) ) |
| 150 | elsni | ⊢ ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 ) | |
| 151 | 150 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 = 𝑧 ) |
| 152 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ¬ 𝑧 ∈ 𝑥 ) | |
| 153 | 152 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑧 ∈ 𝑥 ) |
| 154 | 151 153 | eqneltrd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 ∈ 𝑥 ) |
| 155 | 154 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) = 0 ) |
| 156 | 151 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) = ( 𝑌 ‘ 𝑧 ) ) |
| 157 | 151 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( 𝑌 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑧 ) ) |
| 158 | 156 157 | eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 159 | 155 158 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = ( 0 + ( 𝑌 ‘ 𝑖 ) ) ) |
| 160 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 ∈ { 𝑧 } ) | |
| 161 | 129 160 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ) |
| 162 | 161 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 163 | 149 159 162 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 164 | 114 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℕ0 ) |
| 165 | 164 | nn0cnd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ∈ ℂ ) |
| 166 | 165 | addridd | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + 0 ) = if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 167 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 ∈ { 𝑧 } ) | |
| 168 | velsn | ⊢ ( 𝑖 ∈ { 𝑧 } ↔ 𝑖 = 𝑧 ) | |
| 169 | 167 168 | sylnib | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ¬ 𝑖 = 𝑧 ) |
| 170 | 169 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) = 0 ) |
| 171 | 170 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + 0 ) ) |
| 172 | elun | ⊢ ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ 𝑥 ∨ 𝑖 ∈ { 𝑧 } ) ) | |
| 173 | orcom | ⊢ ( ( 𝑖 ∈ 𝑥 ∨ 𝑖 ∈ { 𝑧 } ) ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖 ∈ 𝑥 ) ) | |
| 174 | 172 173 | bitri | ⊢ ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖 ∈ 𝑥 ) ) |
| 175 | biorf | ⊢ ( ¬ 𝑖 ∈ { 𝑧 } → ( 𝑖 ∈ 𝑥 ↔ ( 𝑖 ∈ { 𝑧 } ∨ 𝑖 ∈ 𝑥 ) ) ) | |
| 176 | 174 175 | bitr4id | ⊢ ( ¬ 𝑖 ∈ { 𝑧 } → ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑖 ∈ 𝑥 ) ) |
| 177 | 176 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) ↔ 𝑖 ∈ 𝑥 ) ) |
| 178 | 177 | ifbid | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) = if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 179 | 166 171 178 | 3eqtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) ∧ ¬ 𝑖 ∈ { 𝑧 } ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 180 | 163 179 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑖 ∈ 𝐼 ) → ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) = if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) |
| 181 | 180 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑖 ∈ 𝐼 ↦ ( if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) + if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
| 182 | 146 181 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) |
| 183 | 182 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) ↔ 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ) ) |
| 184 | 183 | ifbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → if ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) , 1 , 0 ) = if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) |
| 185 | 184 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) ∘f + ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 = 𝑧 , ( 𝑌 ‘ 𝑧 ) , 0 ) ) ) , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ) |
| 186 | 138 140 185 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
| 187 | 6 107 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 188 | 6 128 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
| 189 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 190 | eqid | ⊢ ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) | |
| 191 | 1 5 9 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 192 | 6 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
| 193 | 191 192 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 194 | 193 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝐺 ∈ Mnd ) |
| 195 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑌 ∈ 𝐷 ) |
| 196 | fveq2 | ⊢ ( 𝑥 = 𝑎 → ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑎 ) ) | |
| 197 | 196 | oveq2d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) ) |
| 198 | 196 | oveq1d | ⊢ ( 𝑥 = 𝑎 → ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
| 199 | 197 198 | eqeq12d | ⊢ ( 𝑥 = 𝑎 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) ) |
| 200 | fveq2 | ⊢ ( 𝑦 = 𝑏 → ( 𝑉 ‘ 𝑦 ) = ( 𝑉 ‘ 𝑏 ) ) | |
| 201 | 200 | oveq1d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) ) |
| 202 | 200 | oveq2d | ⊢ ( 𝑦 = 𝑏 → ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
| 203 | 201 202 | eqeq12d | ⊢ ( 𝑦 = 𝑏 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) ) |
| 204 | 199 203 | cbvral2vw | ⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
| 205 | 11 204 | sylib | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
| 206 | 205 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑉 ‘ 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑎 ) ) = ( ( 𝑉 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑏 ) ) ) |
| 207 | 1 2 3 4 108 6 7 8 109 195 206 130 | mplcoe5lem | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ran ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 208 | 102 130 | sstrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → 𝑥 ⊆ 𝐼 ) |
| 209 | 208 | sselda | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 ∈ 𝑥 ) → 𝑘 ∈ 𝐼 ) |
| 210 | 193 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐺 ∈ Mnd ) |
| 211 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 212 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 213 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 214 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → 𝑘 ∈ 𝐼 ) | |
| 215 | 1 8 107 212 213 214 | mvrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 216 | 187 7 210 211 215 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 217 | 216 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 218 | 209 217 | syldan | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 ∈ 𝑥 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 219 | 1 8 107 108 109 134 | mvrcl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝑉 ‘ 𝑧 ) ∈ ( Base ‘ 𝑃 ) ) |
| 220 | 187 7 194 135 219 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 221 | fveq2 | ⊢ ( 𝑘 = 𝑧 → ( 𝑌 ‘ 𝑘 ) = ( 𝑌 ‘ 𝑧 ) ) | |
| 222 | fveq2 | ⊢ ( 𝑘 = 𝑧 → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑧 ) ) | |
| 223 | 221 222 | oveq12d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) |
| 224 | 223 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) ∧ 𝑘 = 𝑧 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) |
| 225 | 187 188 189 190 194 118 207 218 134 152 220 224 | gsumzunsnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) |
| 226 | 186 225 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ( .r ‘ 𝑃 ) ( ( 𝑌 ‘ 𝑧 ) ↑ ( 𝑉 ‘ 𝑧 ) ) ) ) ) |
| 227 | 106 226 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
| 228 | 227 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 229 | 228 | a2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 230 | 105 229 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) ) → ( ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 231 | 230 | expcom | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( 𝜑 → ( ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 232 | 231 | a2d | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ 𝑥 , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝑥 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑧 } ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( 𝑥 ∪ { 𝑧 } ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) ) |
| 233 | 62 74 86 98 101 232 | findcard2s | ⊢ ( ( ◡ 𝑌 “ ℕ ) ∈ Fin → ( 𝜑 → ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) ) |
| 234 | 40 233 | mpcom | ⊢ ( 𝜑 → ( ( ◡ 𝑌 “ ℕ ) ⊆ 𝐼 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) ) |
| 235 | 39 234 | mpd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 236 | 39 | resmptd | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↾ ( ◡ 𝑌 “ ℕ ) ) = ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 237 | 236 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↾ ( ◡ 𝑌 “ ℕ ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ◡ 𝑌 “ ℕ ) ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 238 | 216 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) : 𝐼 ⟶ ( Base ‘ 𝑃 ) ) |
| 239 | ssidd | ⊢ ( 𝜑 → 𝐼 ⊆ 𝐼 ) | |
| 240 | 1 2 3 4 5 6 7 8 9 10 11 239 | mplcoe5lem | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 241 | 15 23 5 25 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑌 ‘ 𝑘 ) = 0 ) |
| 242 | 241 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 0 ↑ ( 𝑉 ‘ 𝑘 ) ) ) |
| 243 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) → 𝑘 ∈ 𝐼 ) | |
| 244 | 243 215 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 245 | 187 57 7 | mulg0 | ⊢ ( ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) → ( 0 ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 1r ‘ 𝑃 ) ) |
| 246 | 244 245 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( 0 ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 1r ‘ 𝑃 ) ) |
| 247 | 242 246 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐼 ∖ ( ◡ 𝑌 “ ℕ ) ) ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( 1r ‘ 𝑃 ) ) |
| 248 | 247 5 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑌 “ ℕ ) ) |
| 249 | 5 | mptexd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∈ V ) |
| 250 | funmpt | ⊢ Fun ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) | |
| 251 | 250 | a1i | ⊢ ( 𝜑 → Fun ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 252 | fvexd | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ V ) | |
| 253 | suppssfifsupp | ⊢ ( ( ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∧ ( 1r ‘ 𝑃 ) ∈ V ) ∧ ( ( ◡ 𝑌 “ ℕ ) ∈ Fin ∧ ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) supp ( 1r ‘ 𝑃 ) ) ⊆ ( ◡ 𝑌 “ ℕ ) ) ) → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) | |
| 254 | 249 251 252 40 248 253 | syl32anc | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) finSupp ( 1r ‘ 𝑃 ) ) |
| 255 | 187 57 189 193 5 238 240 248 254 | gsumzres | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↾ ( ◡ 𝑌 “ ℕ ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 256 | 235 237 255 | 3eqtr2d | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑖 ∈ 𝐼 ↦ if ( 𝑖 ∈ ( ◡ 𝑌 “ ℕ ) , ( 𝑌 ‘ 𝑖 ) , 0 ) ) , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 257 | 37 256 | eqtrd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐼 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |