This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl . (Contributed by SN, 1-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn0cld.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnn0cld.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnn0cld.m | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| mulgnn0cld.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| mulgnn0cld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn0cld.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnn0cld.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnn0cld.m | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 4 | mulgnn0cld.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 5 | mulgnn0cld.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 | mulgnn0cl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |