This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzres.s | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) | ||
| gsumzres.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumzres | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 8 | gsumzres.s | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) | |
| 9 | gsumzres.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 10 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝑊 ) ∈ V ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
| 12 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 ∩ 𝑊 ) ∈ V ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = 0 ) |
| 13 | 4 11 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = 0 ) |
| 14 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 15 | 4 5 14 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 16 | 13 15 | eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 18 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) | |
| 19 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 20 | fnresdm | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) | |
| 21 | 6 19 20 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 22 | 21 | reseq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ 𝑊 ) = ( 𝐹 ↾ 𝑊 ) ) |
| 23 | 18 22 | eqtr3id | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑊 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝐹 ↾ 𝑊 ) ) |
| 25 | 2 | fvexi | ⊢ 0 ∈ V |
| 26 | 25 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 27 | ssid | ⊢ ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) | |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 29 | 6 5 26 28 | gsumcllem | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 0 ) ) |
| 30 | 29 | reseq1d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ↾ ( 𝐴 ∩ 𝑊 ) ) ) |
| 31 | inss1 | ⊢ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 | |
| 32 | resmpt | ⊢ ( ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) | |
| 33 | 31 32 | ax-mp | ⊢ ( ( 𝑘 ∈ 𝐴 ↦ 0 ) ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) |
| 34 | 30 33 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) |
| 35 | 24 34 | eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐹 ↾ 𝑊 ) = ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 ∩ 𝑊 ) ↦ 0 ) ) ) |
| 37 | 29 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) ) |
| 38 | 17 36 37 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝐹 supp 0 ) = ∅ ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 39 | 38 | ex | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 40 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) ) | |
| 41 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) | |
| 42 | 40 41 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 43 | 42 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 = ( 𝐹 supp 0 ) ) |
| 44 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
| 45 | 43 44 | eqsstrd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝑓 ⊆ 𝑊 ) |
| 46 | cores | ⊢ ( ran 𝑓 ⊆ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐹 ∘ 𝑓 ) ) | |
| 47 | 45 46 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐹 ∘ 𝑓 ) ) |
| 48 | 47 | seqeq3d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ) |
| 49 | 48 | fveq1d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 50 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 51 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐺 ∈ Mnd ) |
| 52 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐴 ∩ 𝑊 ) ∈ V ) |
| 53 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 54 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∩ 𝑊 ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) | |
| 55 | 53 31 54 | sylancl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 56 | 23 | feq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ↔ ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) ) |
| 57 | 56 | biimpa | ⊢ ( ( 𝜑 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝑊 ) ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) → ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 58 | 55 57 | syldan | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ↾ 𝑊 ) : ( 𝐴 ∩ 𝑊 ) ⟶ 𝐵 ) |
| 59 | resss | ⊢ ( 𝐹 ↾ 𝑊 ) ⊆ 𝐹 | |
| 60 | 59 | rnssi | ⊢ ran ( 𝐹 ↾ 𝑊 ) ⊆ ran 𝐹 |
| 61 | 3 | cntzidss | ⊢ ( ( ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ∧ ran ( 𝐹 ↾ 𝑊 ) ⊆ ran 𝐹 ) → ran ( 𝐹 ↾ 𝑊 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ↾ 𝑊 ) ) ) |
| 62 | 7 60 61 | sylancl | ⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑊 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ↾ 𝑊 ) ) ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran ( 𝐹 ↾ 𝑊 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ↾ 𝑊 ) ) ) |
| 64 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) | |
| 65 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) | |
| 66 | 65 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ) |
| 67 | suppssdm | ⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 | |
| 68 | 67 6 | fssdm | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 69 | 68 8 | ssind | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 70 | 69 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) |
| 71 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐴 ∩ 𝑊 ) ) | |
| 72 | 66 70 71 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐴 ∩ 𝑊 ) ) |
| 73 | 6 5 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 74 | ressuppss | ⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) | |
| 75 | 73 25 74 | sylancl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 76 | sseq2 | ⊢ ( ran 𝑓 = ( 𝐹 supp 0 ) → ( ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ↔ ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) ) | |
| 77 | 75 76 | imbitrrid | ⊢ ( ran 𝑓 = ( 𝐹 supp 0 ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) ) |
| 78 | 40 41 77 | 3syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) ) |
| 79 | 78 | adantl | ⊢ ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) ) |
| 80 | 79 | impcom | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( ( 𝐹 ↾ 𝑊 ) supp 0 ) ⊆ ran 𝑓 ) |
| 81 | eqid | ⊢ ( ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) supp 0 ) = ( ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) supp 0 ) | |
| 82 | 1 2 50 3 51 52 58 63 64 72 80 81 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ( 𝐹 ↾ 𝑊 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 83 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 84 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 85 | 68 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 86 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ ( 𝐹 supp 0 ) ∧ ( 𝐹 supp 0 ) ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) | |
| 87 | 66 85 86 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1→ 𝐴 ) |
| 88 | 27 43 | sseqtrrid | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 89 | eqid | ⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) | |
| 90 | 1 2 50 3 51 83 53 84 64 87 88 89 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 91 | 49 82 90 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 92 | 91 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 93 | 92 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 94 | 93 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) ) |
| 95 | fsuppimp | ⊢ ( 𝐹 finSupp 0 → ( Fun 𝐹 ∧ ( 𝐹 supp 0 ) ∈ Fin ) ) | |
| 96 | 95 | simprd | ⊢ ( 𝐹 finSupp 0 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 97 | fz1f1o | ⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) | |
| 98 | 9 96 97 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) = ∅ ∨ ( ( ♯ ‘ ( 𝐹 supp 0 ) ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) ) |
| 99 | 39 94 98 | mpjaod | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝑊 ) ) = ( 𝐺 Σg 𝐹 ) ) |