This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mplcoe4 . (Contributed by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplcoe2.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | ||
| mplcoe2.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| mplcoe2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mplcoe5.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplcoe5.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | ||
| mplcoe5.c | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | ||
| mplcoe5.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐼 ) | ||
| Assertion | mplcoe5lem | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplcoe1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplcoe1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplcoe1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mplcoe1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | mplcoe2.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) | |
| 7 | mplcoe2.m | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 8 | mplcoe2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 9 | mplcoe5.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 10 | mplcoe5.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | |
| 11 | mplcoe5.c | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) | |
| 12 | mplcoe5.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐼 ) | |
| 13 | vex | ⊢ 𝑥 ∈ V | |
| 14 | eqid | ⊢ ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) | |
| 15 | 14 | elrnmpt | ⊢ ( 𝑥 ∈ V → ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 16 | 13 15 | mp1i | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 17 | vex | ⊢ 𝑦 ∈ V | |
| 18 | 14 | elrnmpt | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 19 | 17 18 | mp1i | ⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ↔ ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑘 = 𝑙 → ( 𝑌 ‘ 𝑘 ) = ( 𝑌 ‘ 𝑙 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑘 = 𝑙 → ( 𝑉 ‘ 𝑘 ) = ( 𝑉 ‘ 𝑙 ) ) | |
| 22 | 20 21 | oveq12d | ⊢ ( 𝑘 = 𝑙 → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) |
| 23 | 22 | eqeq2d | ⊢ ( 𝑘 = 𝑙 → ( 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ↔ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 24 | 23 | cbvrexvw | ⊢ ( ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ↔ ∃ 𝑙 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) |
| 25 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 26 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 27 | 6 26 | mgpplusg | ⊢ ( .r ‘ 𝑃 ) = ( +g ‘ 𝐺 ) |
| 28 | 27 | eqcomi | ⊢ ( +g ‘ 𝐺 ) = ( .r ‘ 𝑃 ) |
| 29 | 1 5 9 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 30 | ringsrg | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ SRing ) | |
| 31 | 29 30 | syl | ⊢ ( 𝜑 → 𝑃 ∈ SRing ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝑃 ∈ SRing ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → 𝑃 ∈ SRing ) |
| 34 | 6 25 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝐺 ) |
| 35 | 6 | ringmgp | ⊢ ( 𝑃 ∈ Ring → 𝐺 ∈ Mnd ) |
| 36 | 29 35 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝐺 ∈ Mnd ) |
| 38 | 12 | sseld | ⊢ ( 𝜑 → ( 𝑙 ∈ 𝑆 → 𝑙 ∈ 𝐼 ) ) |
| 39 | 38 | imdistani | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝜑 ∧ 𝑙 ∈ 𝐼 ) ) |
| 40 | 2 | psrbag | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
| 41 | 5 40 | syl | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐷 ↔ ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) ) |
| 42 | 10 41 | mpbid | ⊢ ( 𝜑 → ( 𝑌 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑌 “ ℕ ) ∈ Fin ) ) |
| 43 | 42 | simpld | ⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑙 ) ∈ ℕ0 ) |
| 45 | 39 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑙 ) ∈ ℕ0 ) |
| 46 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝐼 ∈ 𝑊 ) |
| 47 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 48 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → 𝑙 ∈ 𝐼 ) |
| 49 | 1 8 25 46 47 48 | mvrcl | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑙 ) ∈ ( Base ‘ 𝑃 ) ) |
| 50 | 34 7 37 45 49 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 51 | 50 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 52 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝐼 ∈ 𝑊 ) |
| 53 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 54 | 12 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝑘 ∈ 𝐼 ) |
| 55 | 1 8 25 52 53 54 | mvrcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 56 | 55 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝑃 ) ) |
| 57 | 43 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 58 | 54 57 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 59 | 58 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 60 | 49 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑙 ) ∈ ( Base ‘ 𝑃 ) ) |
| 61 | 45 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑙 ) ∈ ℕ0 ) |
| 62 | fveq2 | ⊢ ( 𝑥 = 𝑙 → ( 𝑉 ‘ 𝑥 ) = ( 𝑉 ‘ 𝑙 ) ) | |
| 63 | 62 | oveq2d | ⊢ ( 𝑥 = 𝑙 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) ) |
| 64 | 62 | oveq1d | ⊢ ( 𝑥 = 𝑙 → ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) |
| 65 | 63 64 | eqeq12d | ⊢ ( 𝑥 = 𝑙 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ) ) |
| 66 | fveq2 | ⊢ ( 𝑦 = 𝑘 → ( 𝑉 ‘ 𝑦 ) = ( 𝑉 ‘ 𝑘 ) ) | |
| 67 | 66 | oveq1d | ⊢ ( 𝑦 = 𝑘 → ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) ) |
| 68 | 66 | oveq2d | ⊢ ( 𝑦 = 𝑘 → ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) |
| 69 | 67 68 | eqeq12d | ⊢ ( 𝑦 = 𝑘 → ( ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) ↔ ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 70 | 65 69 | rspc2v | ⊢ ( ( 𝑙 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 71 | 48 54 | anim12dan | ⊢ ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) → ( 𝑙 ∈ 𝐼 ∧ 𝑘 ∈ 𝐼 ) ) |
| 72 | 70 71 | syl11 | ⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) → ( ( 𝜑 ∧ ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 73 | 72 | expd | ⊢ ( ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( ( 𝑉 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑥 ) ) = ( ( 𝑉 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑦 ) ) → ( 𝜑 → ( ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 74 | 11 73 | mpcom | ⊢ ( 𝜑 → ( ( 𝑙 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 75 | 74 | impl | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑙 ) ) = ( ( 𝑉 ‘ 𝑙 ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) ) |
| 76 | 25 28 6 7 33 56 60 61 75 | srgpcomp | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( 𝑉 ‘ 𝑘 ) ) = ( ( 𝑉 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) ) |
| 77 | 25 28 6 7 33 51 56 59 76 | srgpcomp | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 78 | oveq12 | ⊢ ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) ) | |
| 79 | oveq12 | ⊢ ( ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ∧ 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) | |
| 80 | 79 | ancoms | ⊢ ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) |
| 81 | 78 80 | eqeq12d | ⊢ ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) = ( ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ( +g ‘ 𝐺 ) ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |
| 82 | 77 81 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∧ 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 83 | 82 | expd | ⊢ ( ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) ∧ 𝑘 ∈ 𝑆 ) → ( 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 84 | 83 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 85 | 84 | com23 | ⊢ ( ( 𝜑 ∧ 𝑙 ∈ 𝑆 ) → ( 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 86 | 85 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑙 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑙 ) ↑ ( 𝑉 ‘ 𝑙 ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 87 | 24 86 | biimtrid | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑆 𝑦 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 88 | 19 87 | sylbid | ⊢ ( 𝜑 → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 89 | 88 | com23 | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑆 𝑥 = ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 90 | 16 89 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) ) |
| 91 | 90 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∧ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 92 | 91 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) |
| 93 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 94 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → 𝐺 ∈ Mnd ) |
| 95 | 12 | sseld | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑆 → 𝑘 ∈ 𝐼 ) ) |
| 96 | 95 | imdistani | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) ) |
| 97 | 96 57 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑌 ‘ 𝑘 ) ∈ ℕ0 ) |
| 98 | 55 34 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( 𝑉 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
| 99 | 93 7 94 97 98 | mulgnn0cld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑆 ) → ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 100 | 99 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) : 𝑆 ⟶ ( Base ‘ 𝐺 ) ) |
| 101 | 100 | frnd | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) |
| 102 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 103 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 104 | 93 102 103 | sscntz | ⊢ ( ( ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ∧ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( Base ‘ 𝐺 ) ) → ( ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 105 | 101 101 104 | syl2anc | ⊢ ( 𝜑 → ( ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ↔ ∀ 𝑥 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ∀ 𝑦 ∈ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 106 | 92 105 | mpbird | ⊢ ( 𝜑 → ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝑘 ∈ 𝑆 ↦ ( ( 𝑌 ‘ 𝑘 ) ↑ ( 𝑉 ‘ 𝑘 ) ) ) ) ) |