This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpl1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mpl1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mpl1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mpl1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mpl1.u | ⊢ 𝑈 = ( 1r ‘ 𝑃 ) | ||
| mpl1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mpl1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mpl1 | ⊢ ( 𝜑 → 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpl1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mpl1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mpl1.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mpl1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mpl1.u | ⊢ 𝑈 = ( 1r ‘ 𝑃 ) | |
| 6 | mpl1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | mpl1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 8 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 9 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 10 | 8 1 9 6 7 | mplsubrg | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 11 | 1 8 9 | mplval2 | ⊢ 𝑃 = ( ( 𝐼 mPwSer 𝑅 ) ↾s ( Base ‘ 𝑃 ) ) |
| 12 | eqid | ⊢ ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 13 | 11 12 | subrg1 | ⊢ ( ( Base ‘ 𝑃 ) ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝑅 ) ) → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 15 | 8 6 7 2 3 4 12 | psr1 | ⊢ ( 𝜑 → ( 1r ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 16 | 14 15 | eqtr3d | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 17 | 5 16 | eqtrid | ⊢ ( 𝜑 → 𝑈 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |