This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bag containing one element is a finite bag. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by AV, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | snifpsrbag | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | simpr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 3 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 0 ∈ ℕ0 ) |
| 5 | 2 4 | ifcld | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ∈ ℕ0 ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐼 ) → if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ∈ ℕ0 ) |
| 7 | 6 | fmpttd | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) : 𝐼 ⟶ ℕ0 ) |
| 8 | id | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉 ) | |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝐼 ∈ 𝑉 → 0 ∈ V ) |
| 11 | eqid | ⊢ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) | |
| 12 | 8 10 11 | sniffsupp | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) finSupp 0 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) finSupp 0 ) |
| 14 | fcdmnn0fsupp | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) finSupp 0 ↔ ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ) ) | |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) finSupp 0 ↔ ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ) ) |
| 16 | 15 | bicomd | ⊢ ( ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) : 𝐼 ⟶ ℕ0 ) → ( ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ↔ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) finSupp 0 ) ) |
| 17 | 7 16 | mpdan | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ↔ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) finSupp 0 ) ) |
| 18 | 13 17 | mpbird | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ) |
| 19 | 1 | psrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) ∈ 𝐷 ↔ ( ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) “ ℕ ) ∈ Fin ) ) ) |
| 21 | 7 18 20 | mpbir2and | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , 𝑁 , 0 ) ) ∈ 𝐷 ) |