This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two monomials adds the exponent vectors together. For example, the product of ( x ^ 2 ) ( y ^ 2 ) with ( y ^ 1 ) ( z ^ 3 ) is ( x ^ 2 ) ( y ^ 3 ) ( z ^ 3 ) , where the exponent vectors <. 2 , 2 , 0 >. and <. 0 , 1 , 3 >. are added to give <. 2 , 3 , 3 >. . (Contributed by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon.s | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplmon.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mplmon.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplmon.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| mplmon.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplmon.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplmon.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | ||
| mplmonmul.t | ⊢ · = ( .r ‘ 𝑃 ) | ||
| mplmonmul.x | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | ||
| Assertion | mplmonmul | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon.s | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplmon.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mplmon.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplmon.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | mplmon.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 6 | mplmon.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | mplmon.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 8 | mplmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) | |
| 9 | mplmonmul.t | ⊢ · = ( .r ‘ 𝑃 ) | |
| 10 | mplmonmul.x | ⊢ ( 𝜑 → 𝑌 ∈ 𝐷 ) | |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | 1 2 3 4 5 6 7 8 | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ∈ 𝐵 ) |
| 13 | 1 2 3 4 5 6 7 10 | mplmon | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ∈ 𝐵 ) |
| 14 | 1 2 11 9 5 12 13 | mplmul | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 15 | eqeq1 | ⊢ ( 𝑦 = 𝑘 → ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) ↔ 𝑘 = ( 𝑋 ∘f + 𝑌 ) ) ) | |
| 16 | 15 | ifbid | ⊢ ( 𝑦 = 𝑘 → if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 17 | 16 | cbvmptv | ⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 18 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) | |
| 19 | 18 | snssd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → { 𝑋 } ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 20 | 19 | resmptd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 22 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 23 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 24 | 22 23 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Mnd ) |
| 25 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑋 ∈ 𝐷 ) |
| 26 | iftrue | ⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , 1 , 0 ) = 1 ) | |
| 27 | eqid | ⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) | |
| 28 | 4 | fvexi | ⊢ 1 ∈ V |
| 29 | 26 27 28 | fvmpt | ⊢ ( 𝑋 ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
| 30 | 25 29 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) = 1 ) |
| 31 | ssrab2 | ⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⊆ 𝐷 | |
| 32 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) | |
| 33 | eqid | ⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } | |
| 34 | 5 33 | psrbagconcl | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 35 | 32 18 34 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 36 | 31 35 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) ∈ 𝐷 ) |
| 37 | eqeq1 | ⊢ ( 𝑦 = ( 𝑘 ∘f − 𝑋 ) → ( 𝑦 = 𝑌 ↔ ( 𝑘 ∘f − 𝑋 ) = 𝑌 ) ) | |
| 38 | 37 | ifbid | ⊢ ( 𝑦 = ( 𝑘 ∘f − 𝑋 ) → if ( 𝑦 = 𝑌 , 1 , 0 ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 39 | eqid | ⊢ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) | |
| 40 | 3 | fvexi | ⊢ 0 ∈ V |
| 41 | 28 40 | ifex | ⊢ if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ V |
| 42 | 38 39 41 | fvmpt | ⊢ ( ( 𝑘 ∘f − 𝑋 ) ∈ 𝐷 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 43 | 36 42 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 44 | 30 43 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) = ( 1 ( .r ‘ 𝑅 ) if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) ) |
| 45 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 46 | 45 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 47 | 45 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ ( Base ‘ 𝑅 ) ) |
| 48 | 46 47 | ifcld | ⊢ ( 𝑅 ∈ Ring → if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 49 | 22 48 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 | 45 11 4 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 51 | 22 49 50 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 1 ( .r ‘ 𝑅 ) if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) = if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) ) |
| 52 | 5 | psrbagf | ⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 53 | 32 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 54 | 53 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ) |
| 55 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 ∈ 𝐷 ) |
| 56 | 5 | psrbagf | ⊢ ( 𝑋 ∈ 𝐷 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 58 | 57 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ) |
| 59 | 58 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ) |
| 60 | 5 | psrbagf | ⊢ ( 𝑌 ∈ 𝐷 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 61 | 10 60 | syl | ⊢ ( 𝜑 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 62 | 61 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 63 | 62 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 64 | 63 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 65 | nn0cn | ⊢ ( ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑘 ‘ 𝑧 ) ∈ ℂ ) | |
| 66 | nn0cn | ⊢ ( ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑋 ‘ 𝑧 ) ∈ ℂ ) | |
| 67 | nn0cn | ⊢ ( ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑌 ‘ 𝑧 ) ∈ ℂ ) | |
| 68 | subadd | ⊢ ( ( ( 𝑘 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑋 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ) ) | |
| 69 | 65 66 67 68 | syl3an | ⊢ ( ( ( 𝑘 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ) ) |
| 70 | 54 59 64 69 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ) ) |
| 71 | eqcom | ⊢ ( ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) = ( 𝑘 ‘ 𝑧 ) ↔ ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) | |
| 72 | 70 71 | bitrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 73 | 72 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 74 | mpteqb | ⊢ ( ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ∈ V → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ) ) | |
| 75 | ovexd | ⊢ ( 𝑧 ∈ 𝐼 → ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ∈ V ) | |
| 76 | 74 75 | mprg | ⊢ ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) = ( 𝑌 ‘ 𝑧 ) ) |
| 77 | mpteqb | ⊢ ( ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) ∈ V → ( ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) | |
| 78 | fvexd | ⊢ ( 𝑧 ∈ 𝐼 → ( 𝑘 ‘ 𝑧 ) ∈ V ) | |
| 79 | 77 78 | mprg | ⊢ ( ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑘 ‘ 𝑧 ) = ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 80 | 73 76 79 | 3bitr4g | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) ) |
| 81 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝐼 ∈ 𝑊 ) |
| 82 | 53 | feqmptd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) ) |
| 83 | 57 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑋 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 85 | 81 54 59 82 84 | offval2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑋 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 86 | 62 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑌 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑌 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) |
| 88 | 85 87 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 ↔ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑘 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 89 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 90 | 89 58 63 83 86 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ∘f + 𝑌 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 91 | 90 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑋 ∘f + 𝑌 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 92 | 82 91 | eqeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) ↔ ( 𝑧 ∈ 𝐼 ↦ ( 𝑘 ‘ 𝑧 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) ) |
| 93 | 80 88 92 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 ↔ 𝑘 = ( 𝑋 ∘f + 𝑌 ) ) ) |
| 94 | 93 | ifbid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( ( 𝑘 ∘f − 𝑋 ) = 𝑌 , 1 , 0 ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 95 | 44 51 94 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 96 | 94 49 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 97 | 95 96 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 98 | fveq2 | ⊢ ( 𝑗 = 𝑋 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ) | |
| 99 | oveq2 | ⊢ ( 𝑗 = 𝑋 → ( 𝑘 ∘f − 𝑗 ) = ( 𝑘 ∘f − 𝑋 ) ) | |
| 100 | 99 | fveq2d | ⊢ ( 𝑗 = 𝑋 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) = ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) |
| 101 | 98 100 | oveq12d | ⊢ ( 𝑗 = 𝑋 → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ) |
| 102 | 45 101 | gsumsn | ⊢ ( ( 𝑅 ∈ Mnd ∧ 𝑋 ∈ 𝐷 ∧ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) = ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ) |
| 103 | 24 25 97 102 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( 𝑗 ∈ { 𝑋 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) = ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑋 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑋 ) ) ) ) |
| 104 | 21 103 95 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 105 | 3 | gsum0 | ⊢ ( 𝑅 Σg ∅ ) = 0 |
| 106 | disjsn | ⊢ ( ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ↔ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) | |
| 107 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 108 | 1 45 2 5 12 | mplelf | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 109 | 108 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 110 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) | |
| 111 | 31 110 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑗 ∈ 𝐷 ) |
| 112 | 109 111 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 113 | 1 45 2 5 13 | mplelf | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 114 | 113 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 115 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) | |
| 116 | 5 33 | psrbagconcl | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 117 | 115 110 116 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) |
| 118 | 31 117 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 119 | 114 118 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 120 | 45 11 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 121 | 107 112 119 120 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 122 | 121 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⟶ ( Base ‘ 𝑅 ) ) |
| 123 | ffn | ⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⟶ ( Base ‘ 𝑅 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) Fn { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) | |
| 124 | fnresdisj | ⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) Fn { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } → ( ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ↔ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) ) | |
| 125 | 122 123 124 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ↔ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) ) |
| 126 | 125 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∩ { 𝑋 } ) = ∅ ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) |
| 127 | 106 126 | sylan2br | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) = ∅ ) |
| 128 | 127 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = ( 𝑅 Σg ∅ ) ) |
| 129 | breq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ↔ 𝑋 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ) ) | |
| 130 | 58 | nn0red | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℝ ) |
| 131 | nn0addge1 | ⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) → ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) | |
| 132 | 130 63 131 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 133 | 132 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) |
| 134 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ∈ V ) | |
| 135 | 89 58 134 83 90 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑋 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 136 | 133 135 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ) |
| 137 | 129 55 136 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) } ) |
| 138 | breq2 | ⊢ ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → ( 𝑥 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) ) ) | |
| 139 | 138 | rabbidv | ⊢ ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) } ) |
| 140 | 139 | eleq2d | ⊢ ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → ( 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↔ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝑋 ∘f + 𝑌 ) } ) ) |
| 141 | 137 140 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) ) |
| 142 | 141 | con3dimp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ¬ 𝑘 = ( 𝑋 ∘f + 𝑌 ) ) |
| 143 | 142 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) = 0 ) |
| 144 | 105 128 143 | 3eqtr4a | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ ¬ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 145 | 104 144 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) |
| 146 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ Ring ) |
| 147 | ringcmn | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) | |
| 148 | 146 147 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 149 | 5 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ Fin ) |
| 150 | 149 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ Fin ) |
| 151 | ssdif | ⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ⊆ 𝐷 → ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ⊆ ( 𝐷 ∖ { 𝑋 } ) ) | |
| 152 | 31 151 | ax-mp | ⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ⊆ ( 𝐷 ∖ { 𝑋 } ) |
| 153 | 152 | sseli | ⊢ ( 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) → 𝑗 ∈ ( 𝐷 ∖ { 𝑋 } ) ) |
| 154 | 108 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 155 | eldifsni | ⊢ ( 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) → 𝑦 ≠ 𝑋 ) | |
| 156 | 155 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → 𝑦 ≠ 𝑋 ) |
| 157 | 156 | neneqd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → ¬ 𝑦 = 𝑋 ) |
| 158 | 157 | iffalsed | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → if ( 𝑦 = 𝑋 , 1 , 0 ) = 0 ) |
| 159 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 160 | 5 159 | rabex2 | ⊢ 𝐷 ∈ V |
| 161 | 160 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝐷 ∈ V ) |
| 162 | 158 161 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 163 | 40 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 0 ∈ V ) |
| 164 | 154 162 161 163 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( 𝐷 ∖ { 𝑋 } ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) = 0 ) |
| 165 | 153 164 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) = 0 ) |
| 166 | 165 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) |
| 167 | eldifi | ⊢ ( 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) → 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) | |
| 168 | 45 11 3 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 169 | 107 119 168 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 170 | 167 169 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( 0 ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 171 | 166 170 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑗 ∈ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∖ { 𝑋 } ) ) → ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) = 0 ) |
| 172 | 160 | rabex | ⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ V |
| 173 | 172 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ∈ V ) |
| 174 | 171 173 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 175 | 160 | mptrabex | ⊢ ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V |
| 176 | funmpt | ⊢ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) | |
| 177 | 175 176 40 | 3pm3.2i | ⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∧ 0 ∈ V ) |
| 178 | 177 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∧ 0 ∈ V ) ) |
| 179 | snfi | ⊢ { 𝑋 } ∈ Fin | |
| 180 | 179 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑋 } ∈ Fin ) |
| 181 | suppssfifsupp | ⊢ ( ( ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ∧ 0 ∈ V ) ∧ ( { 𝑋 } ∈ Fin ∧ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) supp 0 ) ⊆ { 𝑋 } ) ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) finSupp 0 ) | |
| 182 | 178 180 174 181 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) finSupp 0 ) |
| 183 | 45 3 148 150 122 174 182 | gsumres | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ↾ { 𝑋 } ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 184 | 145 183 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) |
| 185 | 184 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐷 ↦ if ( 𝑘 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 186 | 17 185 | eqtrid | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) = ( 𝑘 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑘 } ↦ ( ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ‘ ( 𝑘 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 187 | 14 186 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑋 , 1 , 0 ) ) · ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = 𝑌 , 1 , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑋 ∘f + 𝑌 ) , 1 , 0 ) ) ) |