This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append an element to a finite group sum, more general version of gsumunsnd . (Contributed by AV, 7-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzunsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzunsnd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumzunsnd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzunsnd.f | ⊢ 𝐹 = ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) | ||
| gsumzunsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzunsnd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsumzunsnd.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzunsnd.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | ||
| gsumzunsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | ||
| gsumzunsnd.d | ⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) | ||
| gsumzunsnd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| gsumzunsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) | ||
| Assertion | gsumzunsnd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzunsnd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzunsnd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsumzunsnd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzunsnd.f | ⊢ 𝐹 = ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) | |
| 5 | gsumzunsnd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumzunsnd.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 7 | gsumzunsnd.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 8 | gsumzunsnd.x | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | gsumzunsnd.m | ⊢ ( 𝜑 → 𝑀 ∈ 𝑉 ) | |
| 10 | gsumzunsnd.d | ⊢ ( 𝜑 → ¬ 𝑀 ∈ 𝐴 ) | |
| 11 | gsumzunsnd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 12 | gsumzunsnd.s | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 = 𝑌 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 14 | snfi | ⊢ { 𝑀 } ∈ Fin | |
| 15 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑀 } ∈ Fin ) → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) | |
| 16 | 6 14 15 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) ∈ Fin ) |
| 17 | elun | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↔ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) | |
| 18 | elsni | ⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) | |
| 19 | 18 12 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 = 𝑌 ) |
| 20 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑌 ∈ 𝐵 ) |
| 21 | 19 20 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑀 } ) → 𝑋 ∈ 𝐵 ) |
| 22 | 8 21 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 23 | 17 22 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 24 | 23 4 | fmptd | ⊢ ( 𝜑 → 𝐹 : ( 𝐴 ∪ { 𝑀 } ) ⟶ 𝐵 ) |
| 25 | 8 | expcom | ⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 26 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑌 ∈ 𝐵 ) |
| 27 | 12 26 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 = 𝑀 ) → 𝑋 ∈ 𝐵 ) |
| 28 | 27 | expcom | ⊢ ( 𝑘 = 𝑀 → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 29 | 18 28 | syl | ⊢ ( 𝑘 ∈ { 𝑀 } → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 30 | 25 29 | jaoi | ⊢ ( ( 𝑘 ∈ 𝐴 ∨ 𝑘 ∈ { 𝑀 } ) → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 31 | 17 30 | sylbi | ⊢ ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) → ( 𝜑 → 𝑋 ∈ 𝐵 ) ) |
| 32 | 31 | impcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ) → 𝑋 ∈ 𝐵 ) |
| 33 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 34 | 4 16 32 33 | fsuppmptdm | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ 𝐺 ) ) |
| 35 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑀 } ) = ∅ ↔ ¬ 𝑀 ∈ 𝐴 ) | |
| 36 | 10 35 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑀 } ) = ∅ ) |
| 37 | eqidd | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑀 } ) = ( 𝐴 ∪ { 𝑀 } ) ) | |
| 38 | 1 13 2 3 5 16 24 7 34 36 37 | gsumzsplit | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) + ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) ) ) |
| 39 | 4 | reseq1i | ⊢ ( 𝐹 ↾ 𝐴 ) = ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) |
| 40 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑀 } ) | |
| 41 | resmpt | ⊢ ( 𝐴 ⊆ ( 𝐴 ∪ { 𝑀 } ) → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) | |
| 42 | 40 41 | mp1i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 43 | 39 42 | eqtrid | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) |
| 44 | 43 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) ) |
| 45 | 4 | reseq1i | ⊢ ( 𝐹 ↾ { 𝑀 } ) = ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) |
| 46 | ssun2 | ⊢ { 𝑀 } ⊆ ( 𝐴 ∪ { 𝑀 } ) | |
| 47 | resmpt | ⊢ ( { 𝑀 } ⊆ ( 𝐴 ∪ { 𝑀 } ) → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) | |
| 48 | 46 47 | mp1i | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝑀 } ) ↦ 𝑋 ) ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) |
| 49 | 45 48 | eqtrid | ⊢ ( 𝜑 → ( 𝐹 ↾ { 𝑀 } ) = ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) |
| 50 | 49 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) = ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) |
| 51 | 44 50 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ 𝐴 ) ) + ( 𝐺 Σg ( 𝐹 ↾ { 𝑀 } ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) ) |
| 52 | 1 5 9 11 12 | gsumsnd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) = 𝑌 ) |
| 53 | 52 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + ( 𝐺 Σg ( 𝑘 ∈ { 𝑀 } ↦ 𝑋 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |
| 54 | 38 51 53 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑋 ) ) + 𝑌 ) ) |