This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | ||
| isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | ||
| isercoll.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) | ||
| isercoll.f | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | ||
| isercoll.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | isercoll | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | |
| 4 | isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | |
| 5 | isercoll.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) | |
| 6 | isercoll.f | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | |
| 7 | isercoll.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 8 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 9 | 1 8 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 10 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ) |
| 11 | 9 10 | sselid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℤ ) |
| 12 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 13 | 12 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝑛 ∈ ℤ ) |
| 14 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝑀 ... 𝑚 ) ∈ Fin ) | |
| 15 | ffun | ⊢ ( 𝐺 : ℕ ⟶ 𝑍 → Fun 𝐺 ) | |
| 16 | funimacnv | ⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ) | |
| 17 | 3 15 16 | 3syl | ⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ) |
| 18 | inss1 | ⊢ ( ( 𝑀 ... 𝑚 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑚 ) | |
| 19 | 17 18 | eqsstrdi | ⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ⊆ ( 𝑀 ... 𝑚 ) ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ⊆ ( 𝑀 ... 𝑚 ) ) |
| 21 | 14 20 | ssfid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin ) |
| 22 | hashcl | ⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℕ0 ) | |
| 23 | nn0z | ⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ) | |
| 24 | 21 22 23 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ) |
| 25 | ssid | ⊢ ℕ ⊆ ℕ | |
| 26 | 1 2 3 4 | isercolllem1 | ⊢ ( ( 𝜑 ∧ ℕ ⊆ ℕ ) → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 27 | 25 26 | mpan2 | ⊢ ( 𝜑 → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 28 | ffn | ⊢ ( 𝐺 : ℕ ⟶ 𝑍 → 𝐺 Fn ℕ ) | |
| 29 | fnresdm | ⊢ ( 𝐺 Fn ℕ → ( 𝐺 ↾ ℕ ) = 𝐺 ) | |
| 30 | isoeq1 | ⊢ ( ( 𝐺 ↾ ℕ ) = 𝐺 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) ) | |
| 31 | 3 28 29 30 | 4syl | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) ) |
| 32 | 27 31 | mpbid | ⊢ ( 𝜑 → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 33 | isof1o | ⊢ ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) → 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) ) | |
| 34 | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) → ◡ 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ ) | |
| 35 | f1ofun | ⊢ ( ◡ 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ → Fun ◡ 𝐺 ) | |
| 36 | 32 33 34 35 | 4syl | ⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
| 37 | df-f1 | ⊢ ( 𝐺 : ℕ –1-1→ 𝑍 ↔ ( 𝐺 : ℕ ⟶ 𝑍 ∧ Fun ◡ 𝐺 ) ) | |
| 38 | 3 36 37 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1→ 𝑍 ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝐺 : ℕ –1-1→ 𝑍 ) |
| 40 | fz1ssnn | ⊢ ( 1 ... 𝑛 ) ⊆ ℕ | |
| 41 | ovex | ⊢ ( 1 ... 𝑛 ) ∈ V | |
| 42 | 41 | f1imaen | ⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍 ∧ ( 1 ... 𝑛 ) ⊆ ℕ ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) |
| 43 | 39 40 42 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) |
| 44 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) | |
| 45 | enfii | ⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ) | |
| 46 | 44 43 45 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ) |
| 47 | hashen | ⊢ ( ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ∧ ( 1 ... 𝑛 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) ) | |
| 48 | 46 44 47 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≈ ( 1 ... 𝑛 ) ) ) |
| 49 | 43 48 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = ( ♯ ‘ ( 1 ... 𝑛 ) ) ) |
| 50 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 51 | 50 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 52 | hashfz1 | ⊢ ( 𝑛 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) | |
| 53 | 51 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 1 ... 𝑛 ) ) = 𝑛 ) |
| 54 | 49 53 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) = 𝑛 ) |
| 55 | elfznn | ⊢ ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ∈ ℕ ) | |
| 56 | 55 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ℕ ) |
| 57 | zssre | ⊢ ℤ ⊆ ℝ | |
| 58 | 9 57 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 59 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 60 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 𝑦 ∈ ℕ ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑍 ) | |
| 61 | 59 55 60 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑍 ) |
| 62 | 58 61 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 63 | 10 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑍 ) |
| 64 | 58 63 | sselid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 65 | eluzelz | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) → 𝑚 ∈ ℤ ) | |
| 66 | 65 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℤ ) |
| 67 | 66 | zred | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℝ ) |
| 68 | elfzle2 | ⊢ ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ≤ 𝑛 ) | |
| 69 | 68 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ≤ 𝑛 ) |
| 70 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 71 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑛 ∈ ℕ ) | |
| 72 | isorel | ⊢ ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑛 < 𝑦 ↔ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) | |
| 73 | 70 71 56 72 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑛 < 𝑦 ↔ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 74 | 73 | notbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ¬ 𝑛 < 𝑦 ↔ ¬ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 75 | 56 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ℝ ) |
| 76 | 71 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑛 ∈ ℝ ) |
| 77 | 75 76 | lenltd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ≤ 𝑛 ↔ ¬ 𝑛 < 𝑦 ) ) |
| 78 | 62 64 | lenltd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑛 ) ↔ ¬ ( 𝐺 ‘ 𝑛 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 79 | 74 77 78 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ≤ 𝑛 ↔ ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 80 | 69 79 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 81 | eluzle | ⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ 𝑚 ) | |
| 82 | 81 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ 𝑚 ) |
| 83 | 62 64 67 80 82 | letrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ≤ 𝑚 ) |
| 84 | 61 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 85 | elfz5 | ⊢ ( ( ( 𝐺 ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝐺 ‘ 𝑦 ) ≤ 𝑚 ) ) | |
| 86 | 84 66 85 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ↔ ( 𝐺 ‘ 𝑦 ) ≤ 𝑚 ) ) |
| 87 | 83 86 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) |
| 88 | 59 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝐺 Fn ℕ ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝐺 Fn ℕ ) |
| 90 | elpreima | ⊢ ( 𝐺 Fn ℕ → ( 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) ) ) | |
| 91 | 89 90 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → ( 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ↔ ( 𝑦 ∈ ℕ ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( 𝑀 ... 𝑚 ) ) ) ) |
| 92 | 56 87 91 | mpbir2and | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ ( 1 ... 𝑛 ) ) → 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) |
| 93 | 92 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝑦 ∈ ( 1 ... 𝑛 ) → 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
| 94 | 93 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 1 ... 𝑛 ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) |
| 95 | imass2 | ⊢ ( ( 1 ... 𝑛 ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) | |
| 96 | 94 95 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
| 97 | ssdomg | ⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin → ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) | |
| 98 | 21 96 97 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) |
| 99 | hashdom | ⊢ ( ( ( 𝐺 “ ( 1 ... 𝑛 ) ) ∈ Fin ∧ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) | |
| 100 | 46 21 99 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑛 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
| 101 | 98 100 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑛 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
| 102 | 54 101 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → 𝑛 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) |
| 103 | eluz2 | ⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ↔ ( 𝑛 ∈ ℤ ∧ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ℤ ∧ 𝑛 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ) | |
| 104 | 13 24 102 103 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 105 | fveq2 | ⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ) | |
| 106 | 105 | eleq1d | ⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ) ) |
| 107 | 105 | fvoveq1d | ⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) ) |
| 108 | 107 | breq1d | ⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 109 | 106 108 | anbi12d | ⊢ ( 𝑘 = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 110 | 109 | rspcv | ⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ∈ ( ℤ≥ ‘ 𝑛 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 111 | 104 110 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 112 | 111 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 113 | fveq2 | ⊢ ( 𝑗 = ( 𝐺 ‘ 𝑛 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ) | |
| 114 | 113 | raleqdv | ⊢ ( 𝑗 = ( 𝐺 ‘ 𝑛 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 115 | 114 | rspcev | ⊢ ( ( ( 𝐺 ‘ 𝑛 ) ∈ ℤ ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑛 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 116 | 11 112 115 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 117 | 116 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 118 | 1nn | ⊢ 1 ∈ ℕ | |
| 119 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) | |
| 120 | 3 118 119 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
| 121 | 120 1 | eleqtrdi | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 122 | eluzelz | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐺 ‘ 1 ) ∈ ℤ ) | |
| 123 | eqid | ⊢ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) = ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) | |
| 124 | 123 | rexuz3 | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ℤ → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 125 | 121 122 124 | 3syl | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 126 | 117 125 | sylibrd | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 127 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑀 ... 𝑗 ) ∈ Fin ) | |
| 128 | funimacnv | ⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ) | |
| 129 | 3 15 128 | 3syl | ⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) = ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ) |
| 130 | inss1 | ⊢ ( ( 𝑀 ... 𝑗 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑗 ) | |
| 131 | 129 130 | eqsstrdi | ⊢ ( 𝜑 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ⊆ ( 𝑀 ... 𝑗 ) ) |
| 132 | 131 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ⊆ ( 𝑀 ... 𝑗 ) ) |
| 133 | 127 132 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) |
| 134 | hashcl | ⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 ) | |
| 135 | nn0p1nn | ⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ) | |
| 136 | 133 134 135 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ) |
| 137 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) | |
| 138 | 137 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) |
| 139 | 133 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) |
| 140 | nn0z | ⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ) | |
| 141 | 139 134 140 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ) |
| 142 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) → 𝑘 ∈ ℤ ) | |
| 143 | 142 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℤ ) |
| 144 | zltp1le | ⊢ ( ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) ) | |
| 145 | 141 143 144 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ≤ 𝑘 ) ) |
| 146 | 138 145 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ) |
| 147 | nn0re | ⊢ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ ) | |
| 148 | 133 134 147 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ ) |
| 149 | 148 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ∈ ℝ ) |
| 150 | eluznn | ⊢ ( ( ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) | |
| 151 | 136 150 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 152 | 151 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 153 | 149 152 | ltnled | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) < 𝑘 ↔ ¬ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
| 154 | 146 153 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ¬ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
| 155 | fzss2 | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝑀 ... 𝑗 ) ) | |
| 156 | imass2 | ⊢ ( ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ⊆ ( 𝑀 ... 𝑗 ) → ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) | |
| 157 | imass2 | ⊢ ( ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ⊆ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) | |
| 158 | 155 156 157 | 3syl | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) |
| 159 | ssdomg | ⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin → ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) | |
| 160 | 139 159 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
| 161 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 162 | 161 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑍 ) |
| 163 | 162 1 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 164 | 161 151 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑍 ) |
| 165 | 9 164 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
| 166 | 165 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
| 167 | elfz5 | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 168 | 163 166 167 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
| 169 | 32 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 170 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 171 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 172 | 170 171 | sstri | ⊢ ℕ ⊆ ℝ* |
| 173 | 172 | a1i | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ℕ ⊆ ℝ* ) |
| 174 | imassrn | ⊢ ( 𝐺 “ ℕ ) ⊆ ran 𝐺 | |
| 175 | 161 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 176 | 175 | frnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺 ⊆ 𝑍 ) |
| 177 | 176 58 | sstrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺 ⊆ ℝ ) |
| 178 | 174 177 | sstrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ ) |
| 179 | 178 171 | sstrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ* ) |
| 180 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) | |
| 181 | 151 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
| 182 | leisorel | ⊢ ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( ℕ ⊆ ℝ* ∧ ( 𝐺 “ ℕ ) ⊆ ℝ* ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑥 ≤ 𝑘 ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 183 | 169 173 179 180 181 182 | syl122anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ 𝑘 ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑘 ) ) ) |
| 184 | 168 183 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ↔ 𝑥 ≤ 𝑘 ) ) |
| 185 | 184 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥 ≤ 𝑘 ) ) ) |
| 186 | elpreima | ⊢ ( 𝐺 Fn ℕ → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) | |
| 187 | 161 28 186 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 188 | fznn | ⊢ ( 𝑘 ∈ ℤ → ( 𝑥 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥 ≤ 𝑘 ) ) ) | |
| 189 | 143 188 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( 1 ... 𝑘 ) ↔ ( 𝑥 ∈ ℕ ∧ 𝑥 ≤ 𝑘 ) ) ) |
| 190 | 185 187 189 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ↔ 𝑥 ∈ ( 1 ... 𝑘 ) ) ) |
| 191 | 190 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) = ( 1 ... 𝑘 ) ) |
| 192 | 191 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) = ( 𝐺 “ ( 1 ... 𝑘 ) ) ) |
| 193 | 192 | sseq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
| 194 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝐺 : ℕ –1-1→ 𝑍 ) |
| 195 | fz1ssnn | ⊢ ( 1 ... 𝑘 ) ⊆ ℕ | |
| 196 | ovex | ⊢ ( 1 ... 𝑘 ) ∈ V | |
| 197 | 196 | f1imaen | ⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍 ∧ ( 1 ... 𝑘 ) ⊆ ℕ ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) |
| 198 | 194 195 197 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) |
| 199 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 1 ... 𝑘 ) ∈ Fin ) | |
| 200 | enfii | ⊢ ( ( ( 1 ... 𝑘 ) ∈ Fin ∧ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ) | |
| 201 | 199 198 200 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ) |
| 202 | hashen | ⊢ ( ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ∧ ( 1 ... 𝑘 ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) ) | |
| 203 | 201 199 202 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≈ ( 1 ... 𝑘 ) ) ) |
| 204 | 198 203 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = ( ♯ ‘ ( 1 ... 𝑘 ) ) ) |
| 205 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 206 | hashfz1 | ⊢ ( 𝑘 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑘 ) ) = 𝑘 ) | |
| 207 | 151 205 206 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 1 ... 𝑘 ) ) = 𝑘 ) |
| 208 | 204 207 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) = 𝑘 ) |
| 209 | 208 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
| 210 | hashdom | ⊢ ( ( ( 𝐺 “ ( 1 ... 𝑘 ) ) ∈ Fin ∧ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) | |
| 211 | 201 139 210 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
| 212 | 209 211 | bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ↔ ( 𝐺 “ ( 1 ... 𝑘 ) ) ≼ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) |
| 213 | 160 193 212 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ⊆ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) → 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
| 214 | 158 213 | syl5 | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → 𝑘 ≤ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) ) ) |
| 215 | 154 214 | mtod | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ¬ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 216 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) → 𝑗 ∈ ℤ ) | |
| 217 | 216 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → 𝑗 ∈ ℤ ) |
| 218 | uztric | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ∨ ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 219 | 165 217 218 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) ∨ ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 220 | 219 | ord | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ¬ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 𝑘 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) ) |
| 221 | 215 220 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 222 | oveq2 | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( 𝑀 ... 𝑚 ) = ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) | |
| 223 | 222 | imaeq2d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) = ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 224 | 223 | imaeq2d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) = ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) |
| 225 | 224 | fveq2d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) |
| 226 | 225 | fveq2d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ) |
| 227 | 226 | eleq1d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ) ) |
| 228 | 226 | fvoveq1d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) ) |
| 229 | 228 | breq1d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) |
| 230 | 227 229 | anbi12d | ⊢ ( 𝑚 = ( 𝐺 ‘ 𝑘 ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 231 | 230 | rspcv | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 232 | 221 231 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 233 | 192 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) = ( ♯ ‘ ( 𝐺 “ ( 1 ... 𝑘 ) ) ) ) |
| 234 | 233 208 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) = 𝑘 ) |
| 235 | 234 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
| 236 | 235 | eleq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ↔ ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ) ) |
| 237 | 235 | fvoveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) ) |
| 238 | 237 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ↔ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 239 | 236 238 | anbi12d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... ( 𝐺 ‘ 𝑘 ) ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ↔ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 240 | 232 239 | sylibd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 241 | 240 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 242 | fveq2 | ⊢ ( 𝑛 = ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) → ( ℤ≥ ‘ 𝑛 ) = ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ) | |
| 243 | 242 | raleqdv | ⊢ ( 𝑛 = ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 244 | 243 | rspcev | ⊢ ( ( ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑗 ) ) ) ) + 1 ) ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) |
| 245 | 136 241 244 | syl6an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 246 | 245 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 247 | 126 246 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 248 | 247 | ralbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) |
| 249 | 248 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 250 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 251 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 252 | seqex | ⊢ seq 1 ( + , 𝐻 ) ∈ V | |
| 253 | 252 | a1i | ⊢ ( 𝜑 → seq 1 ( + , 𝐻 ) ∈ V ) |
| 254 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) | |
| 255 | 250 251 253 254 | clim2 | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 256 | 121 122 | syl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ℤ ) |
| 257 | seqex | ⊢ seq 𝑀 ( + , 𝐹 ) ∈ V | |
| 258 | 257 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ V ) |
| 259 | 1 2 3 4 5 6 7 | isercolllem3 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑚 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ) |
| 260 | 123 256 258 259 | clim2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ↔ ( 𝐴 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) ∈ ℂ ∧ ( abs ‘ ( ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑚 ) ) ) ) ) − 𝐴 ) ) < 𝑥 ) ) ) ) |
| 261 | 249 255 260 | 3bitr4d | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑀 ( + , 𝐹 ) ⇝ 𝐴 ) ) |