This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Finite set of sequential integers starting at 1. (Contributed by NM, 31-Aug-2011) (Revised by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fznn | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuzb | ⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) | |
| 2 | elnnuz | ⊢ ( 𝐾 ∈ ℕ ↔ 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 3 | 2 | anbi1i | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 4 | 1 3 | bitr4i | ⊢ ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
| 5 | nnz | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℤ ) | |
| 6 | eluz | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) | |
| 7 | 5 6 | sylan | ⊢ ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
| 8 | 7 | ancoms | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ 𝐾 ≤ 𝑁 ) ) |
| 9 | 8 | pm5.32da | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝐾 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ↔ ( 𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 10 | 4 9 | bitrid | ⊢ ( 𝑁 ∈ ℤ → ( 𝐾 ∈ ( 1 ... 𝑁 ) ↔ ( 𝐾 ∈ ℕ ∧ 𝐾 ≤ 𝑁 ) ) ) |