This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrange an infinite series by spacing out the terms using an order isomorphism. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | |- Z = ( ZZ>= ` M ) |
|
| isercoll.m | |- ( ph -> M e. ZZ ) |
||
| isercoll.g | |- ( ph -> G : NN --> Z ) |
||
| isercoll.i | |- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
||
| isercoll.0 | |- ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) |
||
| isercoll.f | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) |
||
| isercoll.h | |- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
||
| Assertion | isercoll | |- ( ph -> ( seq 1 ( + , H ) ~~> A <-> seq M ( + , F ) ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | isercoll.m | |- ( ph -> M e. ZZ ) |
|
| 3 | isercoll.g | |- ( ph -> G : NN --> Z ) |
|
| 4 | isercoll.i | |- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
|
| 5 | isercoll.0 | |- ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) |
|
| 6 | isercoll.f | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) |
|
| 7 | isercoll.h | |- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
|
| 8 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 9 | 1 8 | eqsstri | |- Z C_ ZZ |
| 10 | 3 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. Z ) |
| 11 | 9 10 | sselid | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ZZ ) |
| 12 | nnz | |- ( n e. NN -> n e. ZZ ) |
|
| 13 | 12 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n e. ZZ ) |
| 14 | fzfid | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( M ... m ) e. Fin ) |
|
| 15 | ffun | |- ( G : NN --> Z -> Fun G ) |
|
| 16 | funimacnv | |- ( Fun G -> ( G " ( `' G " ( M ... m ) ) ) = ( ( M ... m ) i^i ran G ) ) |
|
| 17 | 3 15 16 | 3syl | |- ( ph -> ( G " ( `' G " ( M ... m ) ) ) = ( ( M ... m ) i^i ran G ) ) |
| 18 | inss1 | |- ( ( M ... m ) i^i ran G ) C_ ( M ... m ) |
|
| 19 | 17 18 | eqsstrdi | |- ( ph -> ( G " ( `' G " ( M ... m ) ) ) C_ ( M ... m ) ) |
| 20 | 19 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( `' G " ( M ... m ) ) ) C_ ( M ... m ) ) |
| 21 | 14 20 | ssfid | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( `' G " ( M ... m ) ) ) e. Fin ) |
| 22 | hashcl | |- ( ( G " ( `' G " ( M ... m ) ) ) e. Fin -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. NN0 ) |
|
| 23 | nn0z | |- ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ ) |
|
| 24 | 21 22 23 | 3syl | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ ) |
| 25 | ssid | |- NN C_ NN |
|
| 26 | 1 2 3 4 | isercolllem1 | |- ( ( ph /\ NN C_ NN ) -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) |
| 27 | 25 26 | mpan2 | |- ( ph -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) |
| 28 | ffn | |- ( G : NN --> Z -> G Fn NN ) |
|
| 29 | fnresdm | |- ( G Fn NN -> ( G |` NN ) = G ) |
|
| 30 | isoeq1 | |- ( ( G |` NN ) = G -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) |
|
| 31 | 3 28 29 30 | 4syl | |- ( ph -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) |
| 32 | 27 31 | mpbid | |- ( ph -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 33 | isof1o | |- ( G Isom < , < ( NN , ( G " NN ) ) -> G : NN -1-1-onto-> ( G " NN ) ) |
|
| 34 | f1ocnv | |- ( G : NN -1-1-onto-> ( G " NN ) -> `' G : ( G " NN ) -1-1-onto-> NN ) |
|
| 35 | f1ofun | |- ( `' G : ( G " NN ) -1-1-onto-> NN -> Fun `' G ) |
|
| 36 | 32 33 34 35 | 4syl | |- ( ph -> Fun `' G ) |
| 37 | df-f1 | |- ( G : NN -1-1-> Z <-> ( G : NN --> Z /\ Fun `' G ) ) |
|
| 38 | 3 36 37 | sylanbrc | |- ( ph -> G : NN -1-1-> Z ) |
| 39 | 38 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G : NN -1-1-> Z ) |
| 40 | fz1ssnn | |- ( 1 ... n ) C_ NN |
|
| 41 | ovex | |- ( 1 ... n ) e. _V |
|
| 42 | 41 | f1imaen | |- ( ( G : NN -1-1-> Z /\ ( 1 ... n ) C_ NN ) -> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) |
| 43 | 39 40 42 | sylancl | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) |
| 44 | fzfid | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( 1 ... n ) e. Fin ) |
|
| 45 | enfii | |- ( ( ( 1 ... n ) e. Fin /\ ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) -> ( G " ( 1 ... n ) ) e. Fin ) |
|
| 46 | 44 43 45 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) e. Fin ) |
| 47 | hashen | |- ( ( ( G " ( 1 ... n ) ) e. Fin /\ ( 1 ... n ) e. Fin ) -> ( ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) <-> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) ) |
|
| 48 | 46 44 47 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) <-> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) ) |
| 49 | 43 48 | mpbird | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
| 50 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 51 | 50 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n e. NN0 ) |
| 52 | hashfz1 | |- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
|
| 53 | 51 52 | syl | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( 1 ... n ) ) = n ) |
| 54 | 49 53 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) = n ) |
| 55 | elfznn | |- ( y e. ( 1 ... n ) -> y e. NN ) |
|
| 56 | 55 | adantl | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. NN ) |
| 57 | zssre | |- ZZ C_ RR |
|
| 58 | 9 57 | sstri | |- Z C_ RR |
| 59 | 3 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G : NN --> Z ) |
| 60 | ffvelcdm | |- ( ( G : NN --> Z /\ y e. NN ) -> ( G ` y ) e. Z ) |
|
| 61 | 59 55 60 | syl2an | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. Z ) |
| 62 | 58 61 | sselid | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. RR ) |
| 63 | 10 | ad2antrr | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) e. Z ) |
| 64 | 58 63 | sselid | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) e. RR ) |
| 65 | eluzelz | |- ( m e. ( ZZ>= ` ( G ` n ) ) -> m e. ZZ ) |
|
| 66 | 65 | ad2antlr | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> m e. ZZ ) |
| 67 | 66 | zred | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> m e. RR ) |
| 68 | elfzle2 | |- ( y e. ( 1 ... n ) -> y <_ n ) |
|
| 69 | 68 | adantl | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y <_ n ) |
| 70 | 32 | ad3antrrr | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 71 | simpllr | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> n e. NN ) |
|
| 72 | isorel | |- ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( n e. NN /\ y e. NN ) ) -> ( n < y <-> ( G ` n ) < ( G ` y ) ) ) |
|
| 73 | 70 71 56 72 | syl12anc | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( n < y <-> ( G ` n ) < ( G ` y ) ) ) |
| 74 | 73 | notbid | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( -. n < y <-> -. ( G ` n ) < ( G ` y ) ) ) |
| 75 | 56 | nnred | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. RR ) |
| 76 | 71 | nnred | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> n e. RR ) |
| 77 | 75 76 | lenltd | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y <_ n <-> -. n < y ) ) |
| 78 | 62 64 | lenltd | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( ( G ` y ) <_ ( G ` n ) <-> -. ( G ` n ) < ( G ` y ) ) ) |
| 79 | 74 77 78 | 3bitr4d | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y <_ n <-> ( G ` y ) <_ ( G ` n ) ) ) |
| 80 | 69 79 | mpbid | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) <_ ( G ` n ) ) |
| 81 | eluzle | |- ( m e. ( ZZ>= ` ( G ` n ) ) -> ( G ` n ) <_ m ) |
|
| 82 | 81 | ad2antlr | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) <_ m ) |
| 83 | 62 64 67 80 82 | letrd | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) <_ m ) |
| 84 | 61 1 | eleqtrdi | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. ( ZZ>= ` M ) ) |
| 85 | elfz5 | |- ( ( ( G ` y ) e. ( ZZ>= ` M ) /\ m e. ZZ ) -> ( ( G ` y ) e. ( M ... m ) <-> ( G ` y ) <_ m ) ) |
|
| 86 | 84 66 85 | syl2anc | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( ( G ` y ) e. ( M ... m ) <-> ( G ` y ) <_ m ) ) |
| 87 | 83 86 | mpbird | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. ( M ... m ) ) |
| 88 | 59 | ffnd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G Fn NN ) |
| 89 | 88 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> G Fn NN ) |
| 90 | elpreima | |- ( G Fn NN -> ( y e. ( `' G " ( M ... m ) ) <-> ( y e. NN /\ ( G ` y ) e. ( M ... m ) ) ) ) |
|
| 91 | 89 90 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y e. ( `' G " ( M ... m ) ) <-> ( y e. NN /\ ( G ` y ) e. ( M ... m ) ) ) ) |
| 92 | 56 87 91 | mpbir2and | |- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. ( `' G " ( M ... m ) ) ) |
| 93 | 92 | ex | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( y e. ( 1 ... n ) -> y e. ( `' G " ( M ... m ) ) ) ) |
| 94 | 93 | ssrdv | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( 1 ... n ) C_ ( `' G " ( M ... m ) ) ) |
| 95 | imass2 | |- ( ( 1 ... n ) C_ ( `' G " ( M ... m ) ) -> ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) ) |
|
| 96 | 94 95 | syl | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) ) |
| 97 | ssdomg | |- ( ( G " ( `' G " ( M ... m ) ) ) e. Fin -> ( ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) -> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) |
|
| 98 | 21 96 97 | sylc | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) |
| 99 | hashdom | |- ( ( ( G " ( 1 ... n ) ) e. Fin /\ ( G " ( `' G " ( M ... m ) ) ) e. Fin ) -> ( ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) <-> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) |
|
| 100 | 46 21 99 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) <-> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 101 | 98 100 | mpbird | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 102 | 54 101 | eqbrtrrd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 103 | eluz2 | |- ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) <-> ( n e. ZZ /\ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ /\ n <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) |
|
| 104 | 13 24 102 103 | syl3anbrc | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) ) |
| 105 | fveq2 | |- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( seq 1 ( + , H ) ` k ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) |
|
| 106 | 105 | eleq1d | |- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( seq 1 ( + , H ) ` k ) e. CC <-> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC ) ) |
| 107 | 105 | fvoveq1d | |- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) ) |
| 108 | 107 | breq1d | |- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) |
| 109 | 106 108 | anbi12d | |- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 110 | 109 | rspcv | |- ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 111 | 104 110 | syl | |- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 112 | 111 | ralrimdva | |- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 113 | fveq2 | |- ( j = ( G ` n ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( G ` n ) ) ) |
|
| 114 | 113 | raleqdv | |- ( j = ( G ` n ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 115 | 114 | rspcev | |- ( ( ( G ` n ) e. ZZ /\ A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) |
| 116 | 11 112 115 | syl6an | |- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 117 | 116 | rexlimdva | |- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 118 | 1nn | |- 1 e. NN |
|
| 119 | ffvelcdm | |- ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) |
|
| 120 | 3 118 119 | sylancl | |- ( ph -> ( G ` 1 ) e. Z ) |
| 121 | 120 1 | eleqtrdi | |- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 122 | eluzelz | |- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> ( G ` 1 ) e. ZZ ) |
|
| 123 | eqid | |- ( ZZ>= ` ( G ` 1 ) ) = ( ZZ>= ` ( G ` 1 ) ) |
|
| 124 | 123 | rexuz3 | |- ( ( G ` 1 ) e. ZZ -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 125 | 121 122 124 | 3syl | |- ( ph -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 126 | 117 125 | sylibrd | |- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 127 | fzfid | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( M ... j ) e. Fin ) |
|
| 128 | funimacnv | |- ( Fun G -> ( G " ( `' G " ( M ... j ) ) ) = ( ( M ... j ) i^i ran G ) ) |
|
| 129 | 3 15 128 | 3syl | |- ( ph -> ( G " ( `' G " ( M ... j ) ) ) = ( ( M ... j ) i^i ran G ) ) |
| 130 | inss1 | |- ( ( M ... j ) i^i ran G ) C_ ( M ... j ) |
|
| 131 | 129 130 | eqsstrdi | |- ( ph -> ( G " ( `' G " ( M ... j ) ) ) C_ ( M ... j ) ) |
| 132 | 131 | adantr | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) C_ ( M ... j ) ) |
| 133 | 127 132 | ssfid | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) e. Fin ) |
| 134 | hashcl | |- ( ( G " ( `' G " ( M ... j ) ) ) e. Fin -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 ) |
|
| 135 | nn0p1nn | |- ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN ) |
|
| 136 | 133 134 135 | 3syl | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN ) |
| 137 | eluzle | |- ( k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) |
|
| 138 | 137 | adantl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) |
| 139 | 133 | adantr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) e. Fin ) |
| 140 | nn0z | |- ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ ) |
|
| 141 | 139 134 140 | 3syl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ ) |
| 142 | eluzelz | |- ( k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) -> k e. ZZ ) |
|
| 143 | 142 | adantl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. ZZ ) |
| 144 | zltp1le | |- ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ /\ k e. ZZ ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) ) |
|
| 145 | 141 143 144 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) ) |
| 146 | 138 145 | mpbird | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k ) |
| 147 | nn0re | |- ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) |
|
| 148 | 133 134 147 | 3syl | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) |
| 149 | 148 | adantr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) |
| 150 | eluznn | |- ( ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. NN ) |
|
| 151 | 136 150 | sylan | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. NN ) |
| 152 | 151 | nnred | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. RR ) |
| 153 | 149 152 | ltnled | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> -. k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 154 | 146 153 | mpbid | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> -. k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 155 | fzss2 | |- ( j e. ( ZZ>= ` ( G ` k ) ) -> ( M ... ( G ` k ) ) C_ ( M ... j ) ) |
|
| 156 | imass2 | |- ( ( M ... ( G ` k ) ) C_ ( M ... j ) -> ( `' G " ( M ... ( G ` k ) ) ) C_ ( `' G " ( M ... j ) ) ) |
|
| 157 | imass2 | |- ( ( `' G " ( M ... ( G ` k ) ) ) C_ ( `' G " ( M ... j ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) |
|
| 158 | 155 156 157 | 3syl | |- ( j e. ( ZZ>= ` ( G ` k ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) |
| 159 | ssdomg | |- ( ( G " ( `' G " ( M ... j ) ) ) e. Fin -> ( ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
|
| 160 | 139 159 | syl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 161 | 3 | ad2antrr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> G : NN --> Z ) |
| 162 | 161 | ffvelcdmda | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. Z ) |
| 163 | 162 1 | eleqtrdi | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. ( ZZ>= ` M ) ) |
| 164 | 161 151 | ffvelcdmd | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. Z ) |
| 165 | 9 164 | sselid | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. ZZ ) |
| 166 | 165 | adantr | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` k ) e. ZZ ) |
| 167 | elfz5 | |- ( ( ( G ` x ) e. ( ZZ>= ` M ) /\ ( G ` k ) e. ZZ ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> ( G ` x ) <_ ( G ` k ) ) ) |
|
| 168 | 163 166 167 | syl2anc | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> ( G ` x ) <_ ( G ` k ) ) ) |
| 169 | 32 | ad3antrrr | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 170 | nnssre | |- NN C_ RR |
|
| 171 | ressxr | |- RR C_ RR* |
|
| 172 | 170 171 | sstri | |- NN C_ RR* |
| 173 | 172 | a1i | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> NN C_ RR* ) |
| 174 | imassrn | |- ( G " NN ) C_ ran G |
|
| 175 | 161 | adantr | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> G : NN --> Z ) |
| 176 | 175 | frnd | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ran G C_ Z ) |
| 177 | 176 58 | sstrdi | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ran G C_ RR ) |
| 178 | 174 177 | sstrid | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR ) |
| 179 | 178 171 | sstrdi | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR* ) |
| 180 | simpr | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> x e. NN ) |
|
| 181 | 151 | adantr | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> k e. NN ) |
| 182 | leisorel | |- ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( NN C_ RR* /\ ( G " NN ) C_ RR* ) /\ ( x e. NN /\ k e. NN ) ) -> ( x <_ k <-> ( G ` x ) <_ ( G ` k ) ) ) |
|
| 183 | 169 173 179 180 181 182 | syl122anc | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( x <_ k <-> ( G ` x ) <_ ( G ` k ) ) ) |
| 184 | 168 183 | bitr4d | |- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> x <_ k ) ) |
| 185 | 184 | pm5.32da | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ x <_ k ) ) ) |
| 186 | elpreima | |- ( G Fn NN -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) ) ) |
|
| 187 | 161 28 186 | 3syl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) ) ) |
| 188 | fznn | |- ( k e. ZZ -> ( x e. ( 1 ... k ) <-> ( x e. NN /\ x <_ k ) ) ) |
|
| 189 | 143 188 | syl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( 1 ... k ) <-> ( x e. NN /\ x <_ k ) ) ) |
| 190 | 185 187 189 | 3bitr4d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> x e. ( 1 ... k ) ) ) |
| 191 | 190 | eqrdv | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( `' G " ( M ... ( G ` k ) ) ) = ( 1 ... k ) ) |
| 192 | 191 | imaeq2d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) = ( G " ( 1 ... k ) ) ) |
| 193 | 192 | sseq1d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) <-> ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 194 | 38 | ad2antrr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> G : NN -1-1-> Z ) |
| 195 | fz1ssnn | |- ( 1 ... k ) C_ NN |
|
| 196 | ovex | |- ( 1 ... k ) e. _V |
|
| 197 | 196 | f1imaen | |- ( ( G : NN -1-1-> Z /\ ( 1 ... k ) C_ NN ) -> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) |
| 198 | 194 195 197 | sylancl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) |
| 199 | fzfid | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( 1 ... k ) e. Fin ) |
|
| 200 | enfii | |- ( ( ( 1 ... k ) e. Fin /\ ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) -> ( G " ( 1 ... k ) ) e. Fin ) |
|
| 201 | 199 198 200 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( 1 ... k ) ) e. Fin ) |
| 202 | hashen | |- ( ( ( G " ( 1 ... k ) ) e. Fin /\ ( 1 ... k ) e. Fin ) -> ( ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) <-> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) ) |
|
| 203 | 201 199 202 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) <-> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) ) |
| 204 | 198 203 | mpbird | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) ) |
| 205 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 206 | hashfz1 | |- ( k e. NN0 -> ( # ` ( 1 ... k ) ) = k ) |
|
| 207 | 151 205 206 | 3syl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( 1 ... k ) ) = k ) |
| 208 | 204 207 | eqtrd | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( 1 ... k ) ) ) = k ) |
| 209 | 208 | breq1d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 210 | hashdom | |- ( ( ( G " ( 1 ... k ) ) e. Fin /\ ( G " ( `' G " ( M ... j ) ) ) e. Fin ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
|
| 211 | 201 139 210 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 212 | 209 211 | bitr3d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 213 | 160 193 212 | 3imtr4d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 214 | 158 213 | syl5 | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( j e. ( ZZ>= ` ( G ` k ) ) -> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 215 | 154 214 | mtod | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> -. j e. ( ZZ>= ` ( G ` k ) ) ) |
| 216 | eluzelz | |- ( j e. ( ZZ>= ` ( G ` 1 ) ) -> j e. ZZ ) |
|
| 217 | 216 | ad2antlr | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> j e. ZZ ) |
| 218 | uztric | |- ( ( ( G ` k ) e. ZZ /\ j e. ZZ ) -> ( j e. ( ZZ>= ` ( G ` k ) ) \/ ( G ` k ) e. ( ZZ>= ` j ) ) ) |
|
| 219 | 165 217 218 | syl2anc | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( j e. ( ZZ>= ` ( G ` k ) ) \/ ( G ` k ) e. ( ZZ>= ` j ) ) ) |
| 220 | 219 | ord | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( -. j e. ( ZZ>= ` ( G ` k ) ) -> ( G ` k ) e. ( ZZ>= ` j ) ) ) |
| 221 | 215 220 | mpd | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. ( ZZ>= ` j ) ) |
| 222 | oveq2 | |- ( m = ( G ` k ) -> ( M ... m ) = ( M ... ( G ` k ) ) ) |
|
| 223 | 222 | imaeq2d | |- ( m = ( G ` k ) -> ( `' G " ( M ... m ) ) = ( `' G " ( M ... ( G ` k ) ) ) ) |
| 224 | 223 | imaeq2d | |- ( m = ( G ` k ) -> ( G " ( `' G " ( M ... m ) ) ) = ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) |
| 225 | 224 | fveq2d | |- ( m = ( G ` k ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) = ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) |
| 226 | 225 | fveq2d | |- ( m = ( G ` k ) -> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) ) |
| 227 | 226 | eleq1d | |- ( m = ( G ` k ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC <-> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC ) ) |
| 228 | 226 | fvoveq1d | |- ( m = ( G ` k ) -> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) ) |
| 229 | 228 | breq1d | |- ( m = ( G ` k ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) |
| 230 | 227 229 | anbi12d | |- ( m = ( G ` k ) -> ( ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) |
| 231 | 230 | rspcv | |- ( ( G ` k ) e. ( ZZ>= ` j ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) |
| 232 | 221 231 | syl | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) |
| 233 | 192 | fveq2d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) = ( # ` ( G " ( 1 ... k ) ) ) ) |
| 234 | 233 208 | eqtrd | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) = k ) |
| 235 | 234 | fveq2d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) = ( seq 1 ( + , H ) ` k ) ) |
| 236 | 235 | eleq1d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC <-> ( seq 1 ( + , H ) ` k ) e. CC ) ) |
| 237 | 235 | fvoveq1d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) ) |
| 238 | 237 | breq1d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) |
| 239 | 236 238 | anbi12d | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 240 | 232 239 | sylibd | |- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 241 | 240 | ralrimdva | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 242 | fveq2 | |- ( n = ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) -> ( ZZ>= ` n ) = ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) |
|
| 243 | 242 | raleqdv | |- ( n = ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 244 | 243 | rspcev | |- ( ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) |
| 245 | 136 241 244 | syl6an | |- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 246 | 245 | rexlimdva | |- ( ph -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 247 | 126 246 | impbid | |- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 248 | 247 | ralbidv | |- ( ph -> ( A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 249 | 248 | anbi2d | |- ( ph -> ( ( A e. CC /\ A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) <-> ( A e. CC /\ A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) ) |
| 250 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 251 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 252 | seqex | |- seq 1 ( + , H ) e. _V |
|
| 253 | 252 | a1i | |- ( ph -> seq 1 ( + , H ) e. _V ) |
| 254 | eqidd | |- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) = ( seq 1 ( + , H ) ` k ) ) |
|
| 255 | 250 251 253 254 | clim2 | |- ( ph -> ( seq 1 ( + , H ) ~~> A <-> ( A e. CC /\ A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) ) |
| 256 | 121 122 | syl | |- ( ph -> ( G ` 1 ) e. ZZ ) |
| 257 | seqex | |- seq M ( + , F ) e. _V |
|
| 258 | 257 | a1i | |- ( ph -> seq M ( + , F ) e. _V ) |
| 259 | 1 2 3 4 5 6 7 | isercolllem3 | |- ( ( ph /\ m e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( seq M ( + , F ) ` m ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) |
| 260 | 123 256 258 259 | clim2 | |- ( ph -> ( seq M ( + , F ) ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) ) |
| 261 | 249 255 260 | 3bitr4d | |- ( ph -> ( seq 1 ( + , H ) ~~> A <-> seq M ( + , F ) ~~> A ) ) |