This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isoeq1 | ⊢ ( 𝐻 = 𝐺 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1 | ⊢ ( 𝐻 = 𝐺 → ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ↔ 𝐺 : 𝐴 –1-1-onto→ 𝐵 ) ) | |
| 2 | fveq1 | ⊢ ( 𝐻 = 𝐺 → ( 𝐻 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 3 | fveq1 | ⊢ ( 𝐻 = 𝐺 → ( 𝐻 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 4 | 2 3 | breq12d | ⊢ ( 𝐻 = 𝐺 → ( ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) |
| 5 | 4 | bibi2d | ⊢ ( 𝐻 = 𝐺 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝑅 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 6 | 5 | 2ralbidv | ⊢ ( 𝐻 = 𝐺 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 7 | 1 6 | anbi12d | ⊢ ( 𝐻 = 𝐺 → ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) ) |
| 8 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 9 | df-isom | ⊢ ( 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐺 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐺 ‘ 𝑥 ) 𝑆 ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 10 | 7 8 9 | 3bitr4g | ⊢ ( 𝐻 = 𝐺 → ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐺 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) ) |