This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominates its subsets. Theorem 16 of Suppes p. 94. (Contributed by NM, 19-Jun-1998) (Revised by Mario Carneiro, 24-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdomg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 3 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
| 4 | dff1o3 | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ↔ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ) ) | |
| 5 | 3 4 | mpbi | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ) |
| 6 | 5 | simpli | ⊢ ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 |
| 7 | fof | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) | |
| 8 | 6 7 | ax-mp | ⊢ ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 |
| 9 | fss | ⊢ ( ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) | |
| 10 | 8 9 | mpan | ⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 11 | funi | ⊢ Fun I | |
| 12 | cnvi | ⊢ ◡ I = I | |
| 13 | 12 | funeqi | ⊢ ( Fun ◡ I ↔ Fun I ) |
| 14 | 11 13 | mpbir | ⊢ Fun ◡ I |
| 15 | funres11 | ⊢ ( Fun ◡ I → Fun ◡ ( I ↾ 𝐴 ) ) | |
| 16 | 14 15 | ax-mp | ⊢ Fun ◡ ( I ↾ 𝐴 ) |
| 17 | df-f1 | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ↔ ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ Fun ◡ ( I ↾ 𝐴 ) ) ) | |
| 18 | 10 16 17 | sylanblrc | ⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 20 | f1dom2g | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
| 21 | 1 2 19 20 | syl3anc | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ≼ 𝐵 ) |
| 22 | 21 | expcom | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |