This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | ||
| isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | ||
| Assertion | isercolllem1 | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → ( 𝐺 ↾ 𝑆 ) Isom < , < ( 𝑆 , ( 𝐺 “ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | |
| 4 | isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | |
| 5 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 6 | 1 5 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 7 | zssre | ⊢ ℤ ⊆ ℝ | |
| 8 | 6 7 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 9 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 10 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℕ ) | |
| 11 | 9 10 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑍 ) |
| 12 | 8 11 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 13 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℕ ) | |
| 14 | 13 | nnred | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℝ ) |
| 15 | 12 14 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) − 𝑦 ) ∈ ℝ ) |
| 16 | 10 | nnred | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℝ ) |
| 17 | 12 16 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ∈ ℝ ) |
| 18 | 9 13 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝑍 ) |
| 19 | 8 18 | sselid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
| 20 | 19 14 | resubcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ∈ ℝ ) |
| 21 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 < 𝑦 ) | |
| 22 | 16 14 12 21 | ltsub2dd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) − 𝑦 ) < ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ) |
| 23 | 10 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ∈ ℤ ) |
| 24 | 13 | nnzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ℤ ) |
| 25 | 16 14 21 | ltled | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑥 ≤ 𝑦 ) |
| 26 | eluz2 | ⊢ ( 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑥 ≤ 𝑦 ) ) | |
| 27 | 23 24 25 26 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) ) |
| 28 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑥 ... 𝑦 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑥 ) ) | |
| 29 | eluznn | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑥 ) ) → 𝑘 ∈ ℕ ) | |
| 30 | 10 29 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑥 ) ) → 𝑘 ∈ ℕ ) |
| 31 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 32 | id | ⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) | |
| 33 | 31 32 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) = ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ) |
| 34 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) | |
| 35 | ovex | ⊢ ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ∈ V | |
| 36 | 33 34 35 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ) |
| 37 | 36 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ) |
| 38 | 9 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑍 ) |
| 39 | 8 38 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 40 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
| 42 | 39 41 | resubcld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ∈ ℝ ) |
| 43 | 37 42 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 44 | 30 43 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑥 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 45 | 28 44 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ( 𝑥 ... 𝑦 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 46 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑥 ... ( 𝑦 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑥 ) ) | |
| 47 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 48 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑍 ) | |
| 49 | 9 47 48 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ 𝑍 ) |
| 50 | 8 49 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ ℝ ) |
| 51 | peano2rem | ⊢ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ ℝ → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) ∈ ℝ ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) ∈ ℝ ) |
| 53 | 4 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 54 | 6 38 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℤ ) |
| 55 | 6 49 | sselid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) |
| 56 | zltlem1 | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ ℤ ∧ ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ ℤ ) → ( ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐺 ‘ 𝑘 ) ≤ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) ) ) | |
| 57 | 54 55 56 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐺 ‘ 𝑘 ) ≤ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) ) ) |
| 58 | 53 57 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ≤ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) ) |
| 59 | 39 52 41 58 | lesub1dd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ≤ ( ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) − 𝑘 ) ) |
| 60 | 50 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) ∈ ℂ ) |
| 61 | 1cnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 62 | 41 | recnd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 63 | 60 61 62 | sub32d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) − 𝑘 ) = ( ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 𝑘 ) − 1 ) ) |
| 64 | 60 62 61 | subsub4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 𝑘 ) − 1 ) = ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ) |
| 65 | 63 64 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − 1 ) − 𝑘 ) = ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ) |
| 66 | 59 65 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑘 ) − 𝑘 ) ≤ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ) |
| 67 | 47 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 68 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | |
| 69 | id | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) | |
| 70 | 68 69 | oveq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) = ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ) |
| 71 | ovex | ⊢ ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ∈ V | |
| 72 | 70 34 71 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ) |
| 73 | 67 72 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝐺 ‘ ( 𝑘 + 1 ) ) − ( 𝑘 + 1 ) ) ) |
| 74 | 66 37 73 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 75 | 30 74 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑥 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 76 | 46 75 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) ∧ 𝑘 ∈ ( 𝑥 ... ( 𝑦 − 1 ) ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 77 | 27 45 76 | monoord | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑥 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑦 ) ) |
| 78 | fveq2 | ⊢ ( 𝑛 = 𝑥 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 79 | id | ⊢ ( 𝑛 = 𝑥 → 𝑛 = 𝑥 ) | |
| 80 | 78 79 | oveq12d | ⊢ ( 𝑛 = 𝑥 → ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) = ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ) |
| 81 | ovex | ⊢ ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ∈ V | |
| 82 | 80 34 81 | fvmpt | ⊢ ( 𝑥 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ) |
| 83 | 10 82 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ) |
| 84 | fveq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 85 | id | ⊢ ( 𝑛 = 𝑦 → 𝑛 = 𝑦 ) | |
| 86 | 84 85 | oveq12d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) = ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ) |
| 87 | ovex | ⊢ ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ∈ V | |
| 88 | 86 34 87 | fvmpt | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ) |
| 89 | 13 88 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐺 ‘ 𝑛 ) − 𝑛 ) ) ‘ 𝑦 ) = ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ) |
| 90 | 77 83 89 | 3brtr3d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) − 𝑥 ) ≤ ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ) |
| 91 | 15 17 20 22 90 | ltletrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) − 𝑦 ) < ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ) |
| 92 | 12 19 14 | ltsub1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ↔ ( ( 𝐺 ‘ 𝑥 ) − 𝑦 ) < ( ( 𝐺 ‘ 𝑦 ) − 𝑦 ) ) ) |
| 93 | 91 92 | mpbird | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) ∧ 𝑥 < 𝑦 ) → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) |
| 94 | 93 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 95 | 94 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 96 | ss2ralv | ⊢ ( 𝑆 ⊆ ℕ → ( ∀ 𝑥 ∈ ℕ ∀ 𝑦 ∈ ℕ ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 97 | 95 96 | mpan9 | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) |
| 98 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 99 | ltso | ⊢ < Or ℝ | |
| 100 | soss | ⊢ ( ℕ ⊆ ℝ → ( < Or ℝ → < Or ℕ ) ) | |
| 101 | 98 99 100 | mp2 | ⊢ < Or ℕ |
| 102 | 101 | a1i | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → < Or ℕ ) |
| 103 | soss | ⊢ ( 𝑍 ⊆ ℝ → ( < Or ℝ → < Or 𝑍 ) ) | |
| 104 | 8 99 103 | mp2 | ⊢ < Or 𝑍 |
| 105 | 104 | a1i | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → < Or 𝑍 ) |
| 106 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 107 | simpr | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → 𝑆 ⊆ ℕ ) | |
| 108 | soisores | ⊢ ( ( ( < Or ℕ ∧ < Or 𝑍 ) ∧ ( 𝐺 : ℕ ⟶ 𝑍 ∧ 𝑆 ⊆ ℕ ) ) → ( ( 𝐺 ↾ 𝑆 ) Isom < , < ( 𝑆 , ( 𝐺 “ 𝑆 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) | |
| 109 | 102 105 106 107 108 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → ( ( 𝐺 ↾ 𝑆 ) Isom < , < ( 𝑆 , ( 𝐺 “ 𝑆 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 < 𝑦 → ( 𝐺 ‘ 𝑥 ) < ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 110 | 97 109 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑆 ⊆ ℕ ) → ( 𝐺 ↾ 𝑆 ) Isom < , < ( 𝑆 , ( 𝐺 “ 𝑆 ) ) ) |