This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize isercoll so that both sequences have arbitrary starting point. (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isercoll2.w | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | ||
| isercoll2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isercoll2.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| isercoll2.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑊 ) | ||
| isercoll2.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | ||
| isercoll2.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) | ||
| isercoll2.f | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | ||
| isercoll2.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | isercoll2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll2.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isercoll2.w | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | |
| 3 | isercoll2.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | isercoll2.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 5 | isercoll2.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑊 ) | |
| 6 | isercoll2.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | |
| 7 | isercoll2.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) | |
| 8 | isercoll2.f | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | |
| 9 | isercoll2.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 10 | 1z | ⊢ 1 ∈ ℤ | |
| 11 | zsubcl | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 1 − 𝑀 ) ∈ ℤ ) | |
| 12 | 10 3 11 | sylancr | ⊢ ( 𝜑 → ( 1 − 𝑀 ) ∈ ℤ ) |
| 13 | seqex | ⊢ seq 𝑀 ( + , 𝐻 ) ∈ V | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐻 ) ∈ V ) |
| 15 | seqex | ⊢ seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ∈ V | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ∈ V ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝑍 ) | |
| 18 | 17 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 19 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 − 𝑀 ) ∈ ℤ ) |
| 20 | simpl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝜑 ) | |
| 21 | elfzuz | ⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑘 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 22 | 21 1 | eleqtrrdi | ⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑘 ) → 𝑗 ∈ 𝑍 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 24 | 23 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 25 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 26 | 24 25 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℤ ) |
| 27 | 26 | zcnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ℂ ) |
| 28 | 3 | zcnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑀 ∈ ℂ ) |
| 30 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 1 ∈ ℂ ) | |
| 31 | 27 29 30 | subadd23d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 − 𝑀 ) + 1 ) = ( 𝑗 + ( 1 − 𝑀 ) ) ) |
| 32 | uznn0sub | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑗 − 𝑀 ) ∈ ℕ0 ) | |
| 33 | 24 32 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 − 𝑀 ) ∈ ℕ0 ) |
| 34 | nn0p1nn | ⊢ ( ( 𝑗 − 𝑀 ) ∈ ℕ0 → ( ( 𝑗 − 𝑀 ) + 1 ) ∈ ℕ ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 − 𝑀 ) + 1 ) ∈ ℕ ) |
| 36 | 31 35 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + ( 1 − 𝑀 ) ) ∈ ℕ ) |
| 37 | oveq1 | ⊢ ( 𝑥 = ( 𝑗 + ( 1 − 𝑀 ) ) → ( 𝑥 − 1 ) = ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) | |
| 38 | 37 | oveq2d | ⊢ ( 𝑥 = ( 𝑗 + ( 1 − 𝑀 ) ) → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) |
| 39 | 38 | fveq2d | ⊢ ( 𝑥 = ( 𝑗 + ( 1 − 𝑀 ) ) → ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ) |
| 40 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) | |
| 41 | fvex | ⊢ ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ∈ V | |
| 42 | 39 40 41 | fvmpt | ⊢ ( ( 𝑗 + ( 1 − 𝑀 ) ) ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ) |
| 43 | 36 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) ) |
| 44 | 31 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 − 𝑀 ) + 1 ) − 1 ) = ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) |
| 45 | 33 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 − 𝑀 ) ∈ ℂ ) |
| 46 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 47 | pncan | ⊢ ( ( ( 𝑗 − 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑗 − 𝑀 ) + 1 ) − 1 ) = ( 𝑗 − 𝑀 ) ) | |
| 48 | 45 46 47 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( ( 𝑗 − 𝑀 ) + 1 ) − 1 ) = ( 𝑗 − 𝑀 ) ) |
| 49 | 44 48 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) = ( 𝑗 − 𝑀 ) ) |
| 50 | 49 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) = ( 𝑀 + ( 𝑗 − 𝑀 ) ) ) |
| 51 | 29 27 | pncan3d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 + ( 𝑗 − 𝑀 ) ) = 𝑗 ) |
| 52 | 50 51 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) = 𝑗 ) |
| 53 | 52 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ ( 𝑀 + ( ( 𝑗 + ( 1 − 𝑀 ) ) − 1 ) ) ) = ( 𝐻 ‘ 𝑗 ) ) |
| 54 | 43 53 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) ) |
| 55 | 20 22 54 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑘 ) ) → ( 𝐻 ‘ 𝑗 ) = ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + ( 1 − 𝑀 ) ) ) ) |
| 56 | 18 19 55 | seqshft2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑘 ) = ( seq ( 𝑀 + ( 1 − 𝑀 ) ) ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) ) |
| 57 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑀 ∈ ℂ ) |
| 58 | pncan3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑀 + ( 1 − 𝑀 ) ) = 1 ) | |
| 59 | 57 46 58 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 + ( 1 − 𝑀 ) ) = 1 ) |
| 60 | 59 | seqeq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → seq ( 𝑀 + ( 1 − 𝑀 ) ) ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) = seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) |
| 61 | 60 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq ( 𝑀 + ( 1 − 𝑀 ) ) ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) = ( seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) ) |
| 62 | 56 61 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ‘ ( 𝑘 + ( 1 − 𝑀 ) ) ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑘 ) ) |
| 63 | 1 3 12 14 16 62 | climshft2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ⇝ 𝐴 ) ) |
| 64 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐺 : 𝑍 ⟶ 𝑊 ) |
| 65 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 66 | 3 65 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 67 | nnm1nn0 | ⊢ ( 𝑥 ∈ ℕ → ( 𝑥 − 1 ) ∈ ℕ0 ) | |
| 68 | uzaddcl | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑥 − 1 ) ∈ ℕ0 ) → ( 𝑀 + ( 𝑥 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 69 | 66 67 68 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝑀 + ( 𝑥 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 70 | 69 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝑀 + ( 𝑥 − 1 ) ) ∈ 𝑍 ) |
| 71 | 64 70 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ∈ 𝑊 ) |
| 72 | 71 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) : ℕ ⟶ 𝑊 ) |
| 73 | fveq2 | ⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) | |
| 74 | fvoveq1 | ⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐺 ‘ ( 𝑘 + 1 ) ) = ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) | |
| 75 | 73 74 | breq12d | ⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ↔ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) < ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) ) |
| 76 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) |
| 78 | nnm1nn0 | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) | |
| 79 | uzaddcl | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑗 − 1 ) ∈ ℕ0 ) → ( 𝑀 + ( 𝑗 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 80 | 66 78 79 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( 𝑗 − 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 81 | 80 1 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( 𝑗 − 1 ) ) ∈ 𝑍 ) |
| 82 | 75 77 81 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) < ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) |
| 83 | nncn | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℂ ) | |
| 84 | 83 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℂ ) |
| 85 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) | |
| 86 | 84 85 85 | addsubd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑗 + 1 ) − 1 ) = ( ( 𝑗 − 1 ) + 1 ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) = ( 𝑀 + ( ( 𝑗 − 1 ) + 1 ) ) ) |
| 88 | 28 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 89 | 78 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
| 90 | 89 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 − 1 ) ∈ ℂ ) |
| 91 | 88 90 85 | addassd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) = ( 𝑀 + ( ( 𝑗 − 1 ) + 1 ) ) ) |
| 92 | 87 91 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) = ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) |
| 93 | 92 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) = ( 𝐺 ‘ ( ( 𝑀 + ( 𝑗 − 1 ) ) + 1 ) ) ) |
| 94 | 82 93 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) < ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
| 95 | oveq1 | ⊢ ( 𝑥 = 𝑗 → ( 𝑥 − 1 ) = ( 𝑗 − 1 ) ) | |
| 96 | 95 | oveq2d | ⊢ ( 𝑥 = 𝑗 → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( 𝑗 − 1 ) ) ) |
| 97 | 96 | fveq2d | ⊢ ( 𝑥 = 𝑗 → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
| 98 | eqid | ⊢ ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) = ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) | |
| 99 | fvex | ⊢ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ∈ V | |
| 100 | 97 98 99 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
| 102 | peano2nn | ⊢ ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ ) | |
| 103 | 102 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ ) |
| 104 | oveq1 | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑥 − 1 ) = ( ( 𝑗 + 1 ) − 1 ) ) | |
| 105 | 104 | oveq2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) |
| 106 | 105 | fveq2d | ⊢ ( 𝑥 = ( 𝑗 + 1 ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
| 107 | fvex | ⊢ ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ∈ V | |
| 108 | 106 98 107 | fvmpt | ⊢ ( ( 𝑗 + 1 ) ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
| 109 | 103 108 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( 𝑗 + 1 ) − 1 ) ) ) ) |
| 110 | 94 101 109 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) < ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 111 | 5 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝑍 ) |
| 112 | uznn0sub | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 − 𝑀 ) ∈ ℕ0 ) | |
| 113 | 18 112 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 − 𝑀 ) ∈ ℕ0 ) |
| 114 | nn0p1nn | ⊢ ( ( 𝑘 − 𝑀 ) ∈ ℕ0 → ( ( 𝑘 − 𝑀 ) + 1 ) ∈ ℕ ) | |
| 115 | 113 114 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 − 𝑀 ) + 1 ) ∈ ℕ ) |
| 116 | 113 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑘 − 𝑀 ) ∈ ℂ ) |
| 117 | pncan | ⊢ ( ( ( 𝑘 − 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) = ( 𝑘 − 𝑀 ) ) | |
| 118 | 116 46 117 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) = ( 𝑘 − 𝑀 ) ) |
| 119 | 118 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) = ( 𝑀 + ( 𝑘 − 𝑀 ) ) ) |
| 120 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 121 | 120 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 122 | 121 | zcnd | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℂ ) |
| 123 | pncan3 | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑀 + ( 𝑘 − 𝑀 ) ) = 𝑘 ) | |
| 124 | 28 122 123 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑀 + ( 𝑘 − 𝑀 ) ) = 𝑘 ) |
| 125 | 119 124 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 = ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) |
| 126 | 125 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) ) |
| 127 | oveq1 | ⊢ ( 𝑥 = ( ( 𝑘 − 𝑀 ) + 1 ) → ( 𝑥 − 1 ) = ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) | |
| 128 | 127 | oveq2d | ⊢ ( 𝑥 = ( ( 𝑘 − 𝑀 ) + 1 ) → ( 𝑀 + ( 𝑥 − 1 ) ) = ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) |
| 129 | 128 | fveq2d | ⊢ ( 𝑥 = ( ( 𝑘 − 𝑀 ) + 1 ) → ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐺 ‘ ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) ) |
| 130 | 129 | rspceeqv | ⊢ ( ( ( ( 𝑘 − 𝑀 ) + 1 ) ∈ ℕ ∧ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( ( ( 𝑘 − 𝑀 ) + 1 ) − 1 ) ) ) ) → ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
| 131 | 115 126 130 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
| 132 | fvex | ⊢ ( 𝐺 ‘ 𝑘 ) ∈ V | |
| 133 | 98 | elrnmpt | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ V → ( ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ↔ ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
| 134 | 132 133 | ax-mp | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ↔ ∃ 𝑥 ∈ ℕ ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) |
| 135 | 131 134 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
| 136 | 135 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
| 137 | ffnfv | ⊢ ( 𝐺 : 𝑍 ⟶ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ↔ ( 𝐺 Fn 𝑍 ∧ ∀ 𝑘 ∈ 𝑍 ( 𝐺 ‘ 𝑘 ) ∈ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) | |
| 138 | 111 136 137 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
| 139 | 138 | frnd | ⊢ ( 𝜑 → ran 𝐺 ⊆ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) |
| 140 | 139 | sscond | ⊢ ( 𝜑 → ( 𝑊 ∖ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ⊆ ( 𝑊 ∖ ran 𝐺 ) ) |
| 141 | 140 | sselda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) → 𝑛 ∈ ( 𝑊 ∖ ran 𝐺 ) ) |
| 142 | 141 7 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑊 ∖ ran ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
| 143 | fveq2 | ⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) | |
| 144 | 73 | fveq2d | ⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) |
| 145 | 143 144 | eqeq12d | ⊢ ( 𝑘 = ( 𝑀 + ( 𝑗 − 1 ) ) → ( ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) ) |
| 146 | 9 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 147 | 146 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ 𝑍 ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 148 | 145 147 81 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) |
| 149 | 96 | fveq2d | ⊢ ( 𝑥 = 𝑗 → ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
| 150 | fvex | ⊢ ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ∈ V | |
| 151 | 149 40 150 | fvmpt | ⊢ ( 𝑗 ∈ ℕ → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
| 152 | 151 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐻 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) |
| 153 | 101 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑀 + ( 𝑗 − 1 ) ) ) ) ) |
| 154 | 148 152 153 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑥 ∈ ℕ ↦ ( 𝐺 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ‘ 𝑗 ) ) ) |
| 155 | 2 4 72 110 142 8 154 | isercoll | ⊢ ( 𝜑 → ( seq 1 ( + , ( 𝑥 ∈ ℕ ↦ ( 𝐻 ‘ ( 𝑀 + ( 𝑥 − 1 ) ) ) ) ) ⇝ 𝐴 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐴 ) ) |
| 156 | 63 155 | bitrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ⇝ 𝐴 ↔ seq 𝑁 ( + , 𝐹 ) ⇝ 𝐴 ) ) |