This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | ||
| isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | ||
| isercoll.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) | ||
| isercoll.f | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | ||
| isercoll.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | isercolllem3 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | |
| 4 | isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | |
| 5 | isercoll.0 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) | |
| 6 | isercoll.f | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) | |
| 7 | isercoll.h | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 8 | addlid | ⊢ ( 𝑛 ∈ ℂ → ( 0 + 𝑛 ) = 𝑛 ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ℂ ) → ( 0 + 𝑛 ) = 𝑛 ) |
| 10 | addrid | ⊢ ( 𝑛 ∈ ℂ → ( 𝑛 + 0 ) = 𝑛 ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ℂ ) → ( 𝑛 + 0 ) = 𝑛 ) |
| 12 | addcl | ⊢ ( ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( 𝑛 + 𝑘 ) ∈ ℂ ) | |
| 13 | 12 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ ( 𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ ) ) → ( 𝑛 + 𝑘 ) ∈ ℂ ) |
| 14 | 0cnd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 0 ∈ ℂ ) | |
| 15 | cnvimass | ⊢ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 | |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 17 | 15 16 | fssdm | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ) |
| 18 | 1 2 3 4 | isercolllem1 | ⊢ ( ( 𝜑 ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ) → ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 19 | 17 18 | syldan | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 20 | 1 2 3 4 | isercolllem2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 21 | isoeq4 | ⊢ ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ↔ ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |
| 23 | 19 22 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) Isom < , < ( ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) , ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 24 | 15 | a1i | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 ) |
| 25 | sseqin2 | ⊢ ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 ↔ ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) | |
| 26 | 24 25 | sylib | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 27 | 1nn | ⊢ 1 ∈ ℕ | |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 1 ∈ ℕ ) |
| 29 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) | |
| 30 | 3 27 29 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
| 31 | 30 1 | eleqtrdi | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 34 | elfzuzb | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ) | |
| 35 | 32 33 34 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 36 | ffn | ⊢ ( 𝐺 : ℕ ⟶ 𝑍 → 𝐺 Fn ℕ ) | |
| 37 | elpreima | ⊢ ( 𝐺 Fn ℕ → ( 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 1 ∈ ℕ ∧ ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) | |
| 38 | 16 36 37 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 1 ∈ ℕ ∧ ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 39 | 28 35 38 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 40 | 39 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≠ ∅ ) |
| 41 | 26 40 | eqnetrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ) |
| 42 | imadisj | ⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) | |
| 43 | 42 | necon3bii | ⊢ ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ↔ ( dom 𝐺 ∩ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ) |
| 44 | 41 43 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≠ ∅ ) |
| 45 | ffun | ⊢ ( 𝐺 : ℕ ⟶ 𝑍 → Fun 𝐺 ) | |
| 46 | funimacnv | ⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) | |
| 47 | 16 45 46 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) |
| 48 | inss1 | ⊢ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑁 ) | |
| 49 | 47 48 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 50 | simpl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝜑 ) | |
| 51 | elfzuz | ⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 52 | 51 1 | eleqtrrdi | ⊢ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) → 𝑛 ∈ 𝑍 ) |
| 53 | 50 52 6 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ℂ ) |
| 54 | 47 | difeq2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) = ( ( 𝑀 ... 𝑁 ) ∖ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) ) |
| 55 | difin | ⊢ ( ( 𝑀 ... 𝑁 ) ∖ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) = ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) | |
| 56 | 54 55 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) = ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) ) |
| 57 | 52 | ssriv | ⊢ ( 𝑀 ... 𝑁 ) ⊆ 𝑍 |
| 58 | ssdif | ⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) ⊆ ( 𝑍 ∖ ran 𝐺 ) ) | |
| 59 | 57 58 | mp1i | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ran 𝐺 ) ⊆ ( 𝑍 ∖ ran 𝐺 ) ) |
| 60 | 56 59 | eqsstrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ⊆ ( 𝑍 ∖ ran 𝐺 ) ) |
| 61 | 60 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) → 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) |
| 62 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( 𝑍 ∖ ran 𝐺 ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
| 63 | 61 62 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑀 ... 𝑁 ) ∖ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) → ( 𝐹 ‘ 𝑛 ) = 0 ) |
| 64 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) → 𝑘 ∈ ℕ ) | |
| 65 | 50 64 7 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 66 | 20 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ↔ 𝑘 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 67 | 66 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → 𝑘 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 68 | 67 | fvresd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 69 | 68 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( 𝐹 ‘ ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 70 | 65 69 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( ( 𝐺 ↾ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ‘ 𝑘 ) ) ) |
| 71 | 9 11 13 14 23 44 49 53 63 70 | seqcoll2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 1 ( + , 𝐻 ) ‘ ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |