This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Totality of the ordering relation on integers, stated in terms of upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uztric | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 2 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 3 | letric | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀 ) ) |
| 5 | eluz | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) | |
| 6 | eluz | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑀 ) ) | |
| 7 | 6 | ancoms | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ 𝑁 ≤ 𝑀 ) ) |
| 8 | 5 7 | orbi12d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ↔ ( 𝑀 ≤ 𝑁 ∨ 𝑁 ≤ 𝑀 ) ) ) |
| 9 | 4 8 | mpbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |