This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | ||
| Assertion | dvatan | ⊢ ( ℂ D ( arctan ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | |
| 3 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 4 | 3 | a1i | ⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | ax-icn | ⊢ i ∈ ℂ | |
| 7 | 1 2 | atansssdm | ⊢ 𝑆 ⊆ dom arctan |
| 8 | simpr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 9 | 7 8 | sselid | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ dom arctan ) |
| 10 | atandm2 | ⊢ ( 𝑥 ∈ dom arctan ↔ ( 𝑥 ∈ ℂ ∧ ( 1 − ( i · 𝑥 ) ) ≠ 0 ∧ ( 1 + ( i · 𝑥 ) ) ≠ 0 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ℂ ∧ ( 1 − ( i · 𝑥 ) ) ≠ 0 ∧ ( 1 + ( i · 𝑥 ) ) ≠ 0 ) ) |
| 12 | 11 | simp1d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℂ ) |
| 13 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) | |
| 14 | 6 12 13 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( i · 𝑥 ) ∈ ℂ ) |
| 15 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝑥 ) ∈ ℂ ) → ( 1 − ( i · 𝑥 ) ) ∈ ℂ ) | |
| 16 | 5 14 15 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 − ( i · 𝑥 ) ) ∈ ℂ ) |
| 17 | 11 | simp2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 − ( i · 𝑥 ) ) ≠ 0 ) |
| 18 | 16 17 | logcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( log ‘ ( 1 − ( i · 𝑥 ) ) ) ∈ ℂ ) |
| 19 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝑥 ) ∈ ℂ ) → ( 1 + ( i · 𝑥 ) ) ∈ ℂ ) | |
| 20 | 5 14 19 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( i · 𝑥 ) ) ∈ ℂ ) |
| 21 | 11 | simp3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( i · 𝑥 ) ) ≠ 0 ) |
| 22 | 20 21 | logcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ∈ ℂ ) |
| 23 | 18 22 | subcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ∈ ℂ ) |
| 24 | ovexd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ∈ V ) | |
| 25 | ovexd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( 𝑥 + i ) ) ∈ V ) | |
| 26 | 1 2 | atans2 | ⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ ℂ ∧ ( 1 − ( i · 𝑥 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝑥 ) ) ∈ 𝐷 ) ) |
| 27 | 26 | simp2bi | ⊢ ( 𝑥 ∈ 𝑆 → ( 1 − ( i · 𝑥 ) ) ∈ 𝐷 ) |
| 28 | 27 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 − ( i · 𝑥 ) ) ∈ 𝐷 ) |
| 29 | negex | ⊢ - i ∈ V | |
| 30 | 29 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → - i ∈ V ) |
| 31 | 1 | logdmss | ⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| 32 | simpr | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ 𝐷 ) | |
| 33 | 31 32 | sselid | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ( ℂ ∖ { 0 } ) ) |
| 34 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 35 | f1of | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) ⟶ ran log ) | |
| 36 | 34 35 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) ⟶ ran log |
| 37 | 36 | ffvelcdmi | ⊢ ( 𝑦 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑦 ) ∈ ran log ) |
| 38 | logrncn | ⊢ ( ( log ‘ 𝑦 ) ∈ ran log → ( log ‘ 𝑦 ) ∈ ℂ ) | |
| 39 | 33 37 38 | 3syl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐷 ) → ( log ‘ 𝑦 ) ∈ ℂ ) |
| 40 | ovexd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐷 ) → ( 1 / 𝑦 ) ∈ V ) | |
| 41 | 6 | a1i | ⊢ ( ⊤ → i ∈ ℂ ) |
| 42 | 41 13 | sylan | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) |
| 43 | 5 42 15 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 1 − ( i · 𝑥 ) ) ∈ ℂ ) |
| 44 | 29 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → - i ∈ V ) |
| 45 | 1cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) | |
| 46 | 0cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 0 ∈ ℂ ) | |
| 47 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 48 | 4 47 | dvmptc | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
| 49 | 6 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → i ∈ ℂ ) |
| 50 | simpr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 51 | 4 | dvmptid | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 52 | 4 50 45 51 41 | dvmptcmul | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) ) |
| 53 | 6 | mulridi | ⊢ ( i · 1 ) = i |
| 54 | 53 | mpteq2i | ⊢ ( 𝑥 ∈ ℂ ↦ ( i · 1 ) ) = ( 𝑥 ∈ ℂ ↦ i ) |
| 55 | 52 54 | eqtrdi | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( i · 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ i ) ) |
| 56 | 4 45 46 48 42 49 55 | dvmptsub | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 − ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 0 − i ) ) ) |
| 57 | df-neg | ⊢ - i = ( 0 − i ) | |
| 58 | 57 | mpteq2i | ⊢ ( 𝑥 ∈ ℂ ↦ - i ) = ( 𝑥 ∈ ℂ ↦ ( 0 − i ) ) |
| 59 | 56 58 | eqtr4di | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 − ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ - i ) ) |
| 60 | 2 | ssrab3 | ⊢ 𝑆 ⊆ ℂ |
| 61 | 60 | a1i | ⊢ ( ⊤ → 𝑆 ⊆ ℂ ) |
| 62 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 63 | 62 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 64 | 63 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 65 | 1 2 | atansopn | ⊢ 𝑆 ∈ ( TopOpen ‘ ℂfld ) |
| 66 | 65 | a1i | ⊢ ( ⊤ → 𝑆 ∈ ( TopOpen ‘ ℂfld ) ) |
| 67 | 4 43 44 59 61 64 62 66 | dvmptres | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( 1 − ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ - i ) ) |
| 68 | fssres | ⊢ ( ( log : ( ℂ ∖ { 0 } ) ⟶ ran log ∧ 𝐷 ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ 𝐷 ) : 𝐷 ⟶ ran log ) | |
| 69 | 36 31 68 | mp2an | ⊢ ( log ↾ 𝐷 ) : 𝐷 ⟶ ran log |
| 70 | 69 | a1i | ⊢ ( ⊤ → ( log ↾ 𝐷 ) : 𝐷 ⟶ ran log ) |
| 71 | 70 | feqmptd | ⊢ ( ⊤ → ( log ↾ 𝐷 ) = ( 𝑦 ∈ 𝐷 ↦ ( ( log ↾ 𝐷 ) ‘ 𝑦 ) ) ) |
| 72 | fvres | ⊢ ( 𝑦 ∈ 𝐷 → ( ( log ↾ 𝐷 ) ‘ 𝑦 ) = ( log ‘ 𝑦 ) ) | |
| 73 | 72 | mpteq2ia | ⊢ ( 𝑦 ∈ 𝐷 ↦ ( ( log ↾ 𝐷 ) ‘ 𝑦 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( log ‘ 𝑦 ) ) |
| 74 | 71 73 | eqtr2di | ⊢ ( ⊤ → ( 𝑦 ∈ 𝐷 ↦ ( log ‘ 𝑦 ) ) = ( log ↾ 𝐷 ) ) |
| 75 | 74 | oveq2d | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( log ‘ 𝑦 ) ) ) = ( ℂ D ( log ↾ 𝐷 ) ) ) |
| 76 | 1 | dvlog | ⊢ ( ℂ D ( log ↾ 𝐷 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 1 / 𝑦 ) ) |
| 77 | 75 76 | eqtrdi | ⊢ ( ⊤ → ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( log ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 1 / 𝑦 ) ) ) |
| 78 | fveq2 | ⊢ ( 𝑦 = ( 1 − ( i · 𝑥 ) ) → ( log ‘ 𝑦 ) = ( log ‘ ( 1 − ( i · 𝑥 ) ) ) ) | |
| 79 | oveq2 | ⊢ ( 𝑦 = ( 1 − ( i · 𝑥 ) ) → ( 1 / 𝑦 ) = ( 1 / ( 1 − ( i · 𝑥 ) ) ) ) | |
| 80 | 4 4 28 30 39 40 67 77 78 79 | dvmptco | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( log ‘ ( 1 − ( i · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · - i ) ) ) |
| 81 | irec | ⊢ ( 1 / i ) = - i | |
| 82 | 81 | oveq2i | ⊢ ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · ( 1 / i ) ) = ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · - i ) |
| 83 | 6 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → i ∈ ℂ ) |
| 84 | ine0 | ⊢ i ≠ 0 | |
| 85 | 84 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → i ≠ 0 ) |
| 86 | 16 83 17 85 | recdiv2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) / i ) = ( 1 / ( ( 1 − ( i · 𝑥 ) ) · i ) ) ) |
| 87 | 16 17 | reccld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( 1 − ( i · 𝑥 ) ) ) ∈ ℂ ) |
| 88 | 87 83 85 | divrecd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) / i ) = ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · ( 1 / i ) ) ) |
| 89 | 1cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → 1 ∈ ℂ ) | |
| 90 | 89 14 83 | subdird | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 − ( i · 𝑥 ) ) · i ) = ( ( 1 · i ) − ( ( i · 𝑥 ) · i ) ) ) |
| 91 | 6 | mullidi | ⊢ ( 1 · i ) = i |
| 92 | 91 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 · i ) = i ) |
| 93 | 83 12 83 | mul32d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( i · 𝑥 ) · i ) = ( ( i · i ) · 𝑥 ) ) |
| 94 | ixi | ⊢ ( i · i ) = - 1 | |
| 95 | 94 | oveq1i | ⊢ ( ( i · i ) · 𝑥 ) = ( - 1 · 𝑥 ) |
| 96 | 12 | mulm1d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( - 1 · 𝑥 ) = - 𝑥 ) |
| 97 | 95 96 | eqtrid | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( i · i ) · 𝑥 ) = - 𝑥 ) |
| 98 | 93 97 | eqtrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( i · 𝑥 ) · i ) = - 𝑥 ) |
| 99 | 92 98 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 · i ) − ( ( i · 𝑥 ) · i ) ) = ( i − - 𝑥 ) ) |
| 100 | subneg | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i − - 𝑥 ) = ( i + 𝑥 ) ) | |
| 101 | 6 12 100 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( i − - 𝑥 ) = ( i + 𝑥 ) ) |
| 102 | 90 99 101 | 3eqtrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 − ( i · 𝑥 ) ) · i ) = ( i + 𝑥 ) ) |
| 103 | 83 12 102 | comraddd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 − ( i · 𝑥 ) ) · i ) = ( 𝑥 + i ) ) |
| 104 | 103 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( ( 1 − ( i · 𝑥 ) ) · i ) ) = ( 1 / ( 𝑥 + i ) ) ) |
| 105 | 86 88 104 | 3eqtr3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · ( 1 / i ) ) = ( 1 / ( 𝑥 + i ) ) ) |
| 106 | 82 105 | eqtr3id | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · - i ) = ( 1 / ( 𝑥 + i ) ) ) |
| 107 | 106 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ 𝑆 ↦ ( ( 1 / ( 1 − ( i · 𝑥 ) ) ) · - i ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 𝑥 + i ) ) ) ) |
| 108 | 80 107 | eqtrd | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( log ‘ ( 1 − ( i · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 𝑥 + i ) ) ) ) |
| 109 | ovexd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( 𝑥 − i ) ) ∈ V ) | |
| 110 | 26 | simp3bi | ⊢ ( 𝑥 ∈ 𝑆 → ( 1 + ( i · 𝑥 ) ) ∈ 𝐷 ) |
| 111 | 110 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( i · 𝑥 ) ) ∈ 𝐷 ) |
| 112 | 5 42 19 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℂ ) → ( 1 + ( i · 𝑥 ) ) ∈ ℂ ) |
| 113 | 4 45 46 48 42 49 55 | dvmptadd | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 + ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 0 + i ) ) ) |
| 114 | 6 | addlidi | ⊢ ( 0 + i ) = i |
| 115 | 114 | mpteq2i | ⊢ ( 𝑥 ∈ ℂ ↦ ( 0 + i ) ) = ( 𝑥 ∈ ℂ ↦ i ) |
| 116 | 113 115 | eqtrdi | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 + ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ i ) ) |
| 117 | 4 112 49 116 61 64 62 66 | dvmptres | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( 1 + ( i · 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ i ) ) |
| 118 | fveq2 | ⊢ ( 𝑦 = ( 1 + ( i · 𝑥 ) ) → ( log ‘ 𝑦 ) = ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) | |
| 119 | oveq2 | ⊢ ( 𝑦 = ( 1 + ( i · 𝑥 ) ) → ( 1 / 𝑦 ) = ( 1 / ( 1 + ( i · 𝑥 ) ) ) ) | |
| 120 | 4 4 111 83 39 40 117 77 118 119 | dvmptco | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 1 / ( 1 + ( i · 𝑥 ) ) ) · i ) ) ) |
| 121 | 89 20 83 21 85 | divdiv2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( ( 1 + ( i · 𝑥 ) ) / i ) ) = ( ( 1 · i ) / ( 1 + ( i · 𝑥 ) ) ) ) |
| 122 | 89 14 83 85 | divdird | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( i · 𝑥 ) ) / i ) = ( ( 1 / i ) + ( ( i · 𝑥 ) / i ) ) ) |
| 123 | 81 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / i ) = - i ) |
| 124 | 12 83 85 | divcan3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( i · 𝑥 ) / i ) = 𝑥 ) |
| 125 | 123 124 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / i ) + ( ( i · 𝑥 ) / i ) ) = ( - i + 𝑥 ) ) |
| 126 | negicn | ⊢ - i ∈ ℂ | |
| 127 | addcom | ⊢ ( ( - i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( - i + 𝑥 ) = ( 𝑥 + - i ) ) | |
| 128 | 126 12 127 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( - i + 𝑥 ) = ( 𝑥 + - i ) ) |
| 129 | negsub | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝑥 + - i ) = ( 𝑥 − i ) ) | |
| 130 | 12 6 129 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + - i ) = ( 𝑥 − i ) ) |
| 131 | 128 130 | eqtrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( - i + 𝑥 ) = ( 𝑥 − i ) ) |
| 132 | 122 125 131 | 3eqtrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 + ( i · 𝑥 ) ) / i ) = ( 𝑥 − i ) ) |
| 133 | 132 | oveq2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( ( 1 + ( i · 𝑥 ) ) / i ) ) = ( 1 / ( 𝑥 − i ) ) ) |
| 134 | 89 83 20 21 | div23d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 · i ) / ( 1 + ( i · 𝑥 ) ) ) = ( ( 1 / ( 1 + ( i · 𝑥 ) ) ) · i ) ) |
| 135 | 121 133 134 | 3eqtr3rd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / ( 1 + ( i · 𝑥 ) ) ) · i ) = ( 1 / ( 𝑥 − i ) ) ) |
| 136 | 135 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ 𝑆 ↦ ( ( 1 / ( 1 + ( i · 𝑥 ) ) ) · i ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 𝑥 − i ) ) ) ) |
| 137 | 120 136 | eqtrd | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 𝑥 − i ) ) ) ) |
| 138 | 4 18 25 108 22 109 137 | dvmptsub | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 1 / ( 𝑥 + i ) ) − ( 1 / ( 𝑥 − i ) ) ) ) ) |
| 139 | subcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝑥 − i ) ∈ ℂ ) | |
| 140 | 12 6 139 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − i ) ∈ ℂ ) |
| 141 | addcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝑥 + i ) ∈ ℂ ) | |
| 142 | 12 6 141 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + i ) ∈ ℂ ) |
| 143 | 12 | sqcld | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ↑ 2 ) ∈ ℂ ) |
| 144 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝑥 ↑ 2 ) ∈ ℂ ) → ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ℂ ) | |
| 145 | 5 143 144 | sylancr | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( 𝑥 ↑ 2 ) ) ∈ ℂ ) |
| 146 | atandm4 | ⊢ ( 𝑥 ∈ dom arctan ↔ ( 𝑥 ∈ ℂ ∧ ( 1 + ( 𝑥 ↑ 2 ) ) ≠ 0 ) ) | |
| 147 | 146 | simprbi | ⊢ ( 𝑥 ∈ dom arctan → ( 1 + ( 𝑥 ↑ 2 ) ) ≠ 0 ) |
| 148 | 9 147 | syl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 + ( 𝑥 ↑ 2 ) ) ≠ 0 ) |
| 149 | 140 142 145 148 | divsubdird | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − i ) − ( 𝑥 + i ) ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( ( ( 𝑥 − i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) − ( ( 𝑥 + i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) |
| 150 | 130 | oveq1d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 + - i ) − ( 𝑥 + i ) ) = ( ( 𝑥 − i ) − ( 𝑥 + i ) ) ) |
| 151 | 126 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → - i ∈ ℂ ) |
| 152 | 12 151 83 | pnpcand | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 + - i ) − ( 𝑥 + i ) ) = ( - i − i ) ) |
| 153 | 150 152 | eqtr3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) − ( 𝑥 + i ) ) = ( - i − i ) ) |
| 154 | 2cn | ⊢ 2 ∈ ℂ | |
| 155 | 154 6 84 | divreci | ⊢ ( 2 / i ) = ( 2 · ( 1 / i ) ) |
| 156 | 81 | oveq2i | ⊢ ( 2 · ( 1 / i ) ) = ( 2 · - i ) |
| 157 | 155 156 | eqtri | ⊢ ( 2 / i ) = ( 2 · - i ) |
| 158 | 126 | 2timesi | ⊢ ( 2 · - i ) = ( - i + - i ) |
| 159 | 126 6 | negsubi | ⊢ ( - i + - i ) = ( - i − i ) |
| 160 | 157 158 159 | 3eqtri | ⊢ ( 2 / i ) = ( - i − i ) |
| 161 | 153 160 | eqtr4di | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) − ( 𝑥 + i ) ) = ( 2 / i ) ) |
| 162 | 161 | oveq1d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − i ) − ( 𝑥 + i ) ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |
| 163 | 140 | mulridd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) · 1 ) = ( 𝑥 − i ) ) |
| 164 | 140 142 | mulcomd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) · ( 𝑥 + i ) ) = ( ( 𝑥 + i ) · ( 𝑥 − i ) ) ) |
| 165 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 166 | 165 | oveq2i | ⊢ ( ( 𝑥 ↑ 2 ) − ( i ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) − - 1 ) |
| 167 | subneg | ⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑥 ↑ 2 ) − - 1 ) = ( ( 𝑥 ↑ 2 ) + 1 ) ) | |
| 168 | 143 5 167 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ↑ 2 ) − - 1 ) = ( ( 𝑥 ↑ 2 ) + 1 ) ) |
| 169 | 166 168 | eqtrid | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ↑ 2 ) − ( i ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + 1 ) ) |
| 170 | subsq | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( ( 𝑥 ↑ 2 ) − ( i ↑ 2 ) ) = ( ( 𝑥 + i ) · ( 𝑥 − i ) ) ) | |
| 171 | 12 6 170 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ↑ 2 ) − ( i ↑ 2 ) ) = ( ( 𝑥 + i ) · ( 𝑥 − i ) ) ) |
| 172 | addcom | ⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑥 ↑ 2 ) + 1 ) = ( 1 + ( 𝑥 ↑ 2 ) ) ) | |
| 173 | 143 5 172 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ↑ 2 ) + 1 ) = ( 1 + ( 𝑥 ↑ 2 ) ) ) |
| 174 | 169 171 173 | 3eqtr3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 + i ) · ( 𝑥 − i ) ) = ( 1 + ( 𝑥 ↑ 2 ) ) ) |
| 175 | 164 174 | eqtrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) · ( 𝑥 + i ) ) = ( 1 + ( 𝑥 ↑ 2 ) ) ) |
| 176 | 163 175 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − i ) · 1 ) / ( ( 𝑥 − i ) · ( 𝑥 + i ) ) ) = ( ( 𝑥 − i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |
| 177 | subneg | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( 𝑥 − - i ) = ( 𝑥 + i ) ) | |
| 178 | 12 6 177 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − - i ) = ( 𝑥 + i ) ) |
| 179 | atandm | ⊢ ( 𝑥 ∈ dom arctan ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ - i ∧ 𝑥 ≠ i ) ) | |
| 180 | 9 179 | sylib | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ - i ∧ 𝑥 ≠ i ) ) |
| 181 | 180 | simp2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≠ - i ) |
| 182 | subeq0 | ⊢ ( ( 𝑥 ∈ ℂ ∧ - i ∈ ℂ ) → ( ( 𝑥 − - i ) = 0 ↔ 𝑥 = - i ) ) | |
| 183 | 182 | necon3bid | ⊢ ( ( 𝑥 ∈ ℂ ∧ - i ∈ ℂ ) → ( ( 𝑥 − - i ) ≠ 0 ↔ 𝑥 ≠ - i ) ) |
| 184 | 12 126 183 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − - i ) ≠ 0 ↔ 𝑥 ≠ - i ) ) |
| 185 | 181 184 | mpbird | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − - i ) ≠ 0 ) |
| 186 | 178 185 | eqnetrrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 + i ) ≠ 0 ) |
| 187 | 180 | simp3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ≠ i ) |
| 188 | subeq0 | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( ( 𝑥 − i ) = 0 ↔ 𝑥 = i ) ) | |
| 189 | 188 | necon3bid | ⊢ ( ( 𝑥 ∈ ℂ ∧ i ∈ ℂ ) → ( ( 𝑥 − i ) ≠ 0 ↔ 𝑥 ≠ i ) ) |
| 190 | 12 6 189 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) ≠ 0 ↔ 𝑥 ≠ i ) ) |
| 191 | 187 190 | mpbird | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − i ) ≠ 0 ) |
| 192 | 89 142 140 186 191 | divcan5d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − i ) · 1 ) / ( ( 𝑥 − i ) · ( 𝑥 + i ) ) ) = ( 1 / ( 𝑥 + i ) ) ) |
| 193 | 176 192 | eqtr3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( 1 / ( 𝑥 + i ) ) ) |
| 194 | 142 | mulridd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 + i ) · 1 ) = ( 𝑥 + i ) ) |
| 195 | 194 174 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 + i ) · 1 ) / ( ( 𝑥 + i ) · ( 𝑥 − i ) ) ) = ( ( 𝑥 + i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |
| 196 | 89 140 142 191 186 | divcan5d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 + i ) · 1 ) / ( ( 𝑥 + i ) · ( 𝑥 − i ) ) ) = ( 1 / ( 𝑥 − i ) ) ) |
| 197 | 195 196 | eqtr3d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 + i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( 1 / ( 𝑥 − i ) ) ) |
| 198 | 193 197 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) − ( ( 𝑥 + i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) = ( ( 1 / ( 𝑥 + i ) ) − ( 1 / ( 𝑥 − i ) ) ) ) |
| 199 | 149 162 198 | 3eqtr3rd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( 1 / ( 𝑥 + i ) ) − ( 1 / ( 𝑥 − i ) ) ) = ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |
| 200 | 199 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ 𝑆 ↦ ( ( 1 / ( 𝑥 + i ) ) − ( 1 / ( 𝑥 − i ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) |
| 201 | 138 200 | eqtrd | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) |
| 202 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 203 | 6 202 | mp1i | ⊢ ( ⊤ → ( i / 2 ) ∈ ℂ ) |
| 204 | 4 23 24 201 203 | dvmptcmul | ⊢ ( ⊤ → ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) ) |
| 205 | df-atan | ⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) | |
| 206 | 205 | reseq1i | ⊢ ( arctan ↾ 𝑆 ) = ( ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ↾ 𝑆 ) |
| 207 | atanf | ⊢ arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ | |
| 208 | 207 | fdmi | ⊢ dom arctan = ( ℂ ∖ { - i , i } ) |
| 209 | 7 208 | sseqtri | ⊢ 𝑆 ⊆ ( ℂ ∖ { - i , i } ) |
| 210 | resmpt | ⊢ ( 𝑆 ⊆ ( ℂ ∖ { - i , i } ) → ( ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ) | |
| 211 | 209 210 | ax-mp | ⊢ ( ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) |
| 212 | 206 211 | eqtri | ⊢ ( arctan ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) |
| 213 | 212 | a1i | ⊢ ( ⊤ → ( arctan ↾ 𝑆 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ) |
| 214 | 213 | oveq2d | ⊢ ( ⊤ → ( ℂ D ( arctan ↾ 𝑆 ) ) = ( ℂ D ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) ) ) |
| 215 | 2ne0 | ⊢ 2 ≠ 0 | |
| 216 | divcan6 | ⊢ ( ( ( i ∈ ℂ ∧ i ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( i / 2 ) · ( 2 / i ) ) = 1 ) | |
| 217 | 6 84 154 215 216 | mp4an | ⊢ ( ( i / 2 ) · ( 2 / i ) ) = 1 |
| 218 | 217 | oveq1i | ⊢ ( ( ( i / 2 ) · ( 2 / i ) ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) |
| 219 | 6 202 | mp1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( i / 2 ) ∈ ℂ ) |
| 220 | 154 6 84 | divcli | ⊢ ( 2 / i ) ∈ ℂ |
| 221 | 220 | a1i | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 2 / i ) ∈ ℂ ) |
| 222 | 219 221 145 148 | divassd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( ( ( i / 2 ) · ( 2 / i ) ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( ( i / 2 ) · ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) |
| 223 | 218 222 | eqtr3id | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝑆 ) → ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) = ( ( i / 2 ) · ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) |
| 224 | 223 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( i / 2 ) · ( ( 2 / i ) / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) ) |
| 225 | 204 214 224 | 3eqtr4d | ⊢ ( ⊤ → ( ℂ D ( arctan ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) ) |
| 226 | 225 | mptru | ⊢ ( ℂ D ( arctan ↾ 𝑆 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 1 / ( 1 + ( 𝑥 ↑ 2 ) ) ) ) |