This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Factor the difference of two squares. (Contributed by NM, 21-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 3 | subcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) | |
| 4 | 1 2 3 | adddird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 · ( 𝐴 − 𝐵 ) ) + ( 𝐵 · ( 𝐴 − 𝐵 ) ) ) ) |
| 5 | subdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 · 𝐴 ) − ( 𝐴 · 𝐵 ) ) ) | |
| 6 | 5 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 · 𝐴 ) − ( 𝐴 · 𝐵 ) ) ) |
| 7 | sqval | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐴 ) − ( 𝐴 · 𝐵 ) ) ) |
| 10 | 6 9 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 ↑ 2 ) − ( 𝐴 · 𝐵 ) ) ) |
| 11 | 2 1 2 | subdid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐵 · 𝐴 ) − ( 𝐵 · 𝐵 ) ) ) |
| 12 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) | |
| 13 | sqval | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 2 ) = ( 𝐵 · 𝐵 ) ) |
| 15 | 12 14 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐵 · 𝐴 ) − ( 𝐵 · 𝐵 ) ) ) |
| 16 | 11 15 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐵 ↑ 2 ) ) ) |
| 17 | 10 16 | oveq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 · ( 𝐴 − 𝐵 ) ) + ( 𝐵 · ( 𝐴 − 𝐵 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐴 · 𝐵 ) ) + ( ( 𝐴 · 𝐵 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 18 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 20 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 21 | sqcl | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 2 ) ∈ ℂ ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 23 | 19 20 22 | npncand | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) − ( 𝐴 · 𝐵 ) ) + ( ( 𝐴 · 𝐵 ) − ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 24 | 4 17 23 | 3eqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) = ( ( 𝐴 + 𝐵 ) · ( 𝐴 − 𝐵 ) ) ) |