This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg | ⊢ - 𝐵 = ( 0 − 𝐵 ) | |
| 2 | 1 | oveq2i | ⊢ ( 𝐴 − - 𝐵 ) = ( 𝐴 − ( 0 − 𝐵 ) ) |
| 3 | 0cn | ⊢ 0 ∈ ℂ | |
| 4 | subsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 0 − 𝐵 ) ) = ( ( 𝐴 − 0 ) + 𝐵 ) ) | |
| 5 | 3 4 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 0 − 𝐵 ) ) = ( ( 𝐴 − 0 ) + 𝐵 ) ) |
| 6 | 2 5 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( ( 𝐴 − 0 ) + 𝐵 ) ) |
| 7 | subid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 0 ) + 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) |