This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the complex logarithm function. (Contributed by Mario Carneiro, 25-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| Assertion | dvlog | ⊢ ( ℂ D ( log ↾ 𝐷 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 4 | 3 | toponrestid | ⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
| 5 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 6 | 5 | a1i | ⊢ ( ⊤ → ℂ ∈ { ℝ , ℂ } ) |
| 7 | 1 | logdmopn | ⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| 8 | 7 | a1i | ⊢ ( ⊤ → 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) |
| 9 | logf1o | ⊢ log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log | |
| 10 | f1of1 | ⊢ ( log : ( ℂ ∖ { 0 } ) –1-1-onto→ ran log → log : ( ℂ ∖ { 0 } ) –1-1→ ran log ) | |
| 11 | 9 10 | ax-mp | ⊢ log : ( ℂ ∖ { 0 } ) –1-1→ ran log |
| 12 | 1 | logdmss | ⊢ 𝐷 ⊆ ( ℂ ∖ { 0 } ) |
| 13 | f1ores | ⊢ ( ( log : ( ℂ ∖ { 0 } ) –1-1→ ran log ∧ 𝐷 ⊆ ( ℂ ∖ { 0 } ) ) → ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) ) | |
| 14 | 11 12 13 | mp2an | ⊢ ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) |
| 15 | f1ocnv | ⊢ ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) → ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) | |
| 16 | 14 15 | ax-mp | ⊢ ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 |
| 17 | df-log | ⊢ log = ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 18 | 17 | reseq1i | ⊢ ( log ↾ 𝐷 ) = ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) |
| 19 | 18 | cnveqi | ⊢ ◡ ( log ↾ 𝐷 ) = ◡ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) |
| 20 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 21 | cnvimass | ⊢ ( ◡ ℑ “ ( - π (,] π ) ) ⊆ dom ℑ | |
| 22 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 23 | 22 | fdmi | ⊢ dom ℑ = ℂ |
| 24 | 21 23 | sseqtri | ⊢ ( ◡ ℑ “ ( - π (,] π ) ) ⊆ ℂ |
| 25 | fssres | ⊢ ( ( exp : ℂ ⟶ ℂ ∧ ( ◡ ℑ “ ( - π (,] π ) ) ⊆ ℂ ) → ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) ⟶ ℂ ) | |
| 26 | 20 24 25 | mp2an | ⊢ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) ⟶ ℂ |
| 27 | ffun | ⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) : ( ◡ ℑ “ ( - π (,] π ) ) ⟶ ℂ → Fun ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ) | |
| 28 | funcnvres2 | ⊢ ( Fun ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) → ◡ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) = ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) ) | |
| 29 | 26 27 28 | mp2b | ⊢ ◡ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ 𝐷 ) = ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 30 | cnvimass | ⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ⊆ dom ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) | |
| 31 | 26 | fdmi | ⊢ dom ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) = ( ◡ ℑ “ ( - π (,] π ) ) |
| 32 | 30 31 | sseqtri | ⊢ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) |
| 33 | resabs1 | ⊢ ( ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ⊆ ( ◡ ℑ “ ( - π (,] π ) ) → ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) ) | |
| 34 | 32 33 | ax-mp | ⊢ ( ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 35 | 19 29 34 | 3eqtri | ⊢ ◡ ( log ↾ 𝐷 ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 36 | 17 | imaeq1i | ⊢ ( log “ 𝐷 ) = ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) |
| 37 | 36 | reseq2i | ⊢ ( exp ↾ ( log “ 𝐷 ) ) = ( exp ↾ ( ◡ ( exp ↾ ( ◡ ℑ “ ( - π (,] π ) ) ) “ 𝐷 ) ) |
| 38 | 35 37 | eqtr4i | ⊢ ◡ ( log ↾ 𝐷 ) = ( exp ↾ ( log “ 𝐷 ) ) |
| 39 | f1oeq1 | ⊢ ( ◡ ( log ↾ 𝐷 ) = ( exp ↾ ( log “ 𝐷 ) ) → ( ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ↔ ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) ) | |
| 40 | 38 39 | ax-mp | ⊢ ( ◡ ( log ↾ 𝐷 ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ↔ ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) |
| 41 | 16 40 | mpbi | ⊢ ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 |
| 42 | 41 | a1i | ⊢ ( ⊤ → ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ) |
| 43 | 38 | cnveqi | ⊢ ◡ ◡ ( log ↾ 𝐷 ) = ◡ ( exp ↾ ( log “ 𝐷 ) ) |
| 44 | relres | ⊢ Rel ( log ↾ 𝐷 ) | |
| 45 | dfrel2 | ⊢ ( Rel ( log ↾ 𝐷 ) ↔ ◡ ◡ ( log ↾ 𝐷 ) = ( log ↾ 𝐷 ) ) | |
| 46 | 44 45 | mpbi | ⊢ ◡ ◡ ( log ↾ 𝐷 ) = ( log ↾ 𝐷 ) |
| 47 | 43 46 | eqtr3i | ⊢ ◡ ( exp ↾ ( log “ 𝐷 ) ) = ( log ↾ 𝐷 ) |
| 48 | f1of | ⊢ ( ( log ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( log “ 𝐷 ) → ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) | |
| 49 | 14 48 | mp1i | ⊢ ( ⊤ → ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) |
| 50 | imassrn | ⊢ ( log “ 𝐷 ) ⊆ ran log | |
| 51 | logrncn | ⊢ ( 𝑥 ∈ ran log → 𝑥 ∈ ℂ ) | |
| 52 | 51 | ssriv | ⊢ ran log ⊆ ℂ |
| 53 | 50 52 | sstri | ⊢ ( log “ 𝐷 ) ⊆ ℂ |
| 54 | 1 | logcn | ⊢ ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) |
| 55 | cncfcdm | ⊢ ( ( ( log “ 𝐷 ) ⊆ ℂ ∧ ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ℂ ) ) → ( ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ↔ ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) ) | |
| 56 | 53 54 55 | mp2an | ⊢ ( ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ↔ ( log ↾ 𝐷 ) : 𝐷 ⟶ ( log “ 𝐷 ) ) |
| 57 | 49 56 | sylibr | ⊢ ( ⊤ → ( log ↾ 𝐷 ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ) |
| 58 | 47 57 | eqeltrid | ⊢ ( ⊤ → ◡ ( exp ↾ ( log “ 𝐷 ) ) ∈ ( 𝐷 –cn→ ( log “ 𝐷 ) ) ) |
| 59 | ssid | ⊢ ℂ ⊆ ℂ | |
| 60 | 2 4 | dvres | ⊢ ( ( ( ℂ ⊆ ℂ ∧ exp : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ( log “ 𝐷 ) ⊆ ℂ ) ) → ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) ) |
| 61 | 59 20 59 53 60 | mp4an | ⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) |
| 62 | dvef | ⊢ ( ℂ D exp ) = exp | |
| 63 | 2 | cnfldtop | ⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
| 64 | 1 | dvloglem | ⊢ ( log “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) |
| 65 | isopn3i | ⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( log “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) = ( log “ 𝐷 ) ) | |
| 66 | 63 64 65 | mp2an | ⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) = ( log “ 𝐷 ) |
| 67 | 62 66 | reseq12i | ⊢ ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) = ( exp ↾ ( log “ 𝐷 ) ) |
| 68 | 61 67 | eqtri | ⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( exp ↾ ( log “ 𝐷 ) ) |
| 69 | 68 | dmeqi | ⊢ dom ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = dom ( exp ↾ ( log “ 𝐷 ) ) |
| 70 | dmres | ⊢ dom ( exp ↾ ( log “ 𝐷 ) ) = ( ( log “ 𝐷 ) ∩ dom exp ) | |
| 71 | 20 | fdmi | ⊢ dom exp = ℂ |
| 72 | 53 71 | sseqtrri | ⊢ ( log “ 𝐷 ) ⊆ dom exp |
| 73 | dfss2 | ⊢ ( ( log “ 𝐷 ) ⊆ dom exp ↔ ( ( log “ 𝐷 ) ∩ dom exp ) = ( log “ 𝐷 ) ) | |
| 74 | 72 73 | mpbi | ⊢ ( ( log “ 𝐷 ) ∩ dom exp ) = ( log “ 𝐷 ) |
| 75 | 69 70 74 | 3eqtri | ⊢ dom ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( log “ 𝐷 ) |
| 76 | 75 | a1i | ⊢ ( ⊤ → dom ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) = ( log “ 𝐷 ) ) |
| 77 | neirr | ⊢ ¬ 0 ≠ 0 | |
| 78 | resss | ⊢ ( ( ℂ D exp ) ↾ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ( log “ 𝐷 ) ) ) ⊆ ( ℂ D exp ) | |
| 79 | 61 78 | eqsstri | ⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ ( ℂ D exp ) |
| 80 | 79 62 | sseqtri | ⊢ ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ exp |
| 81 | 80 | rnssi | ⊢ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ ran exp |
| 82 | eff2 | ⊢ exp : ℂ ⟶ ( ℂ ∖ { 0 } ) | |
| 83 | frn | ⊢ ( exp : ℂ ⟶ ( ℂ ∖ { 0 } ) → ran exp ⊆ ( ℂ ∖ { 0 } ) ) | |
| 84 | 82 83 | ax-mp | ⊢ ran exp ⊆ ( ℂ ∖ { 0 } ) |
| 85 | 81 84 | sstri | ⊢ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ⊆ ( ℂ ∖ { 0 } ) |
| 86 | 85 | sseli | ⊢ ( 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) → 0 ∈ ( ℂ ∖ { 0 } ) ) |
| 87 | eldifsn | ⊢ ( 0 ∈ ( ℂ ∖ { 0 } ) ↔ ( 0 ∈ ℂ ∧ 0 ≠ 0 ) ) | |
| 88 | 86 87 | sylib | ⊢ ( 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) → ( 0 ∈ ℂ ∧ 0 ≠ 0 ) ) |
| 89 | 88 | simprd | ⊢ ( 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) → 0 ≠ 0 ) |
| 90 | 77 89 | mto | ⊢ ¬ 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) |
| 91 | 90 | a1i | ⊢ ( ⊤ → ¬ 0 ∈ ran ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ) |
| 92 | 2 4 6 8 42 58 76 91 | dvcnv | ⊢ ( ⊤ → ( ℂ D ◡ ( exp ↾ ( log “ 𝐷 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) ) ) |
| 93 | 92 | mptru | ⊢ ( ℂ D ◡ ( exp ↾ ( log “ 𝐷 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) ) |
| 94 | 47 | oveq2i | ⊢ ( ℂ D ◡ ( exp ↾ ( log “ 𝐷 ) ) ) = ( ℂ D ( log ↾ 𝐷 ) ) |
| 95 | 68 | fveq1i | ⊢ ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = ( ( exp ↾ ( log “ 𝐷 ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) |
| 96 | f1ocnvfv2 | ⊢ ( ( ( exp ↾ ( log “ 𝐷 ) ) : ( log “ 𝐷 ) –1-1-onto→ 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( exp ↾ ( log “ 𝐷 ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = 𝑥 ) | |
| 97 | 41 96 | mpan | ⊢ ( 𝑥 ∈ 𝐷 → ( ( exp ↾ ( log “ 𝐷 ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = 𝑥 ) |
| 98 | 95 97 | eqtrid | ⊢ ( 𝑥 ∈ 𝐷 → ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) = 𝑥 ) |
| 99 | 98 | oveq2d | ⊢ ( 𝑥 ∈ 𝐷 → ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) = ( 1 / 𝑥 ) ) |
| 100 | 99 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( 1 / ( ( ℂ D ( exp ↾ ( log “ 𝐷 ) ) ) ‘ ( ◡ ( exp ↾ ( log “ 𝐷 ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |
| 101 | 93 94 100 | 3eqtr3i | ⊢ ( ℂ D ( log ↾ 𝐷 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 1 / 𝑥 ) ) |