This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A compact form of atandm . (Contributed by Mario Carneiro, 3-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm4 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atandm3 | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ) | |
| 2 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 3 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 4 | subeq0 | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ - 1 ∈ ℂ ) → ( ( ( 𝐴 ↑ 2 ) − - 1 ) = 0 ↔ ( 𝐴 ↑ 2 ) = - 1 ) ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑ 2 ) − - 1 ) = 0 ↔ ( 𝐴 ↑ 2 ) = - 1 ) ) |
| 6 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 7 | subneg | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) − - 1 ) = ( ( 𝐴 ↑ 2 ) + 1 ) ) | |
| 8 | 2 6 7 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) − - 1 ) = ( ( 𝐴 ↑ 2 ) + 1 ) ) |
| 9 | addcom | ⊢ ( ( ( 𝐴 ↑ 2 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) + 1 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) | |
| 10 | 2 6 9 | sylancl | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) + 1 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) − - 1 ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐴 ↑ 2 ) − - 1 ) = 0 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) = 0 ) ) |
| 13 | 5 12 | bitr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) = - 1 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) = 0 ) ) |
| 14 | 13 | necon3bid | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) ≠ - 1 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |
| 15 | 14 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ≠ - 1 ) ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |
| 16 | 1 15 | bitri | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≠ 0 ) ) |