This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | ||
| Assertion | atansopn | ⊢ 𝑆 ∈ ( TopOpen ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | |
| 3 | eqid | ⊢ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) | |
| 4 | 3 | mptpreima | ⊢ ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } |
| 5 | 2 4 | eqtr4i | ⊢ 𝑆 = ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) |
| 6 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 7 | 6 | cnfldtopon | ⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
| 9 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 10 | 8 8 9 | cnmptc | ⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ 1 ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 11 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 12 | 6 | expcn | ⊢ ( 2 ∈ ℕ0 → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 13 | 11 12 | mp1i | ⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 𝑦 ↑ 2 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 14 | 6 | addcn | ⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 15 | 14 | a1i | ⊢ ( ⊤ → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 16 | 8 10 13 15 | cnmpt12f | ⊢ ( ⊤ → ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 17 | 16 | mptru | ⊢ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 18 | 1 | logdmopn | ⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
| 19 | cnima | ⊢ ( ( ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) → ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) ) | |
| 20 | 17 18 19 | mp2an | ⊢ ( ◡ ( 𝑦 ∈ ℂ ↦ ( 1 + ( 𝑦 ↑ 2 ) ) ) “ 𝐷 ) ∈ ( TopOpen ‘ ℂfld ) |
| 21 | 5 20 | eqeltri | ⊢ 𝑆 ∈ ( TopOpen ‘ ℂfld ) |