This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
||
| Assertion | dvatan | |- ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | |- D = ( CC \ ( -oo (,] 0 ) ) |
|
| 2 | atansopn.s | |- S = { y e. CC | ( 1 + ( y ^ 2 ) ) e. D } |
|
| 3 | cnelprrecn | |- CC e. { RR , CC } |
|
| 4 | 3 | a1i | |- ( T. -> CC e. { RR , CC } ) |
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | ax-icn | |- _i e. CC |
|
| 7 | 1 2 | atansssdm | |- S C_ dom arctan |
| 8 | simpr | |- ( ( T. /\ x e. S ) -> x e. S ) |
|
| 9 | 7 8 | sselid | |- ( ( T. /\ x e. S ) -> x e. dom arctan ) |
| 10 | atandm2 | |- ( x e. dom arctan <-> ( x e. CC /\ ( 1 - ( _i x. x ) ) =/= 0 /\ ( 1 + ( _i x. x ) ) =/= 0 ) ) |
|
| 11 | 9 10 | sylib | |- ( ( T. /\ x e. S ) -> ( x e. CC /\ ( 1 - ( _i x. x ) ) =/= 0 /\ ( 1 + ( _i x. x ) ) =/= 0 ) ) |
| 12 | 11 | simp1d | |- ( ( T. /\ x e. S ) -> x e. CC ) |
| 13 | mulcl | |- ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC ) |
|
| 14 | 6 12 13 | sylancr | |- ( ( T. /\ x e. S ) -> ( _i x. x ) e. CC ) |
| 15 | subcl | |- ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 - ( _i x. x ) ) e. CC ) |
|
| 16 | 5 14 15 | sylancr | |- ( ( T. /\ x e. S ) -> ( 1 - ( _i x. x ) ) e. CC ) |
| 17 | 11 | simp2d | |- ( ( T. /\ x e. S ) -> ( 1 - ( _i x. x ) ) =/= 0 ) |
| 18 | 16 17 | logcld | |- ( ( T. /\ x e. S ) -> ( log ` ( 1 - ( _i x. x ) ) ) e. CC ) |
| 19 | addcl | |- ( ( 1 e. CC /\ ( _i x. x ) e. CC ) -> ( 1 + ( _i x. x ) ) e. CC ) |
|
| 20 | 5 14 19 | sylancr | |- ( ( T. /\ x e. S ) -> ( 1 + ( _i x. x ) ) e. CC ) |
| 21 | 11 | simp3d | |- ( ( T. /\ x e. S ) -> ( 1 + ( _i x. x ) ) =/= 0 ) |
| 22 | 20 21 | logcld | |- ( ( T. /\ x e. S ) -> ( log ` ( 1 + ( _i x. x ) ) ) e. CC ) |
| 23 | 18 22 | subcld | |- ( ( T. /\ x e. S ) -> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) e. CC ) |
| 24 | ovexd | |- ( ( T. /\ x e. S ) -> ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) e. _V ) |
|
| 25 | ovexd | |- ( ( T. /\ x e. S ) -> ( 1 / ( x + _i ) ) e. _V ) |
|
| 26 | 1 2 | atans2 | |- ( x e. S <-> ( x e. CC /\ ( 1 - ( _i x. x ) ) e. D /\ ( 1 + ( _i x. x ) ) e. D ) ) |
| 27 | 26 | simp2bi | |- ( x e. S -> ( 1 - ( _i x. x ) ) e. D ) |
| 28 | 27 | adantl | |- ( ( T. /\ x e. S ) -> ( 1 - ( _i x. x ) ) e. D ) |
| 29 | negex | |- -u _i e. _V |
|
| 30 | 29 | a1i | |- ( ( T. /\ x e. S ) -> -u _i e. _V ) |
| 31 | 1 | logdmss | |- D C_ ( CC \ { 0 } ) |
| 32 | simpr | |- ( ( T. /\ y e. D ) -> y e. D ) |
|
| 33 | 31 32 | sselid | |- ( ( T. /\ y e. D ) -> y e. ( CC \ { 0 } ) ) |
| 34 | logf1o | |- log : ( CC \ { 0 } ) -1-1-onto-> ran log |
|
| 35 | f1of | |- ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) |
|
| 36 | 34 35 | ax-mp | |- log : ( CC \ { 0 } ) --> ran log |
| 37 | 36 | ffvelcdmi | |- ( y e. ( CC \ { 0 } ) -> ( log ` y ) e. ran log ) |
| 38 | logrncn | |- ( ( log ` y ) e. ran log -> ( log ` y ) e. CC ) |
|
| 39 | 33 37 38 | 3syl | |- ( ( T. /\ y e. D ) -> ( log ` y ) e. CC ) |
| 40 | ovexd | |- ( ( T. /\ y e. D ) -> ( 1 / y ) e. _V ) |
|
| 41 | 6 | a1i | |- ( T. -> _i e. CC ) |
| 42 | 41 13 | sylan | |- ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 43 | 5 42 15 | sylancr | |- ( ( T. /\ x e. CC ) -> ( 1 - ( _i x. x ) ) e. CC ) |
| 44 | 29 | a1i | |- ( ( T. /\ x e. CC ) -> -u _i e. _V ) |
| 45 | 1cnd | |- ( ( T. /\ x e. CC ) -> 1 e. CC ) |
|
| 46 | 0cnd | |- ( ( T. /\ x e. CC ) -> 0 e. CC ) |
|
| 47 | 1cnd | |- ( T. -> 1 e. CC ) |
|
| 48 | 4 47 | dvmptc | |- ( T. -> ( CC _D ( x e. CC |-> 1 ) ) = ( x e. CC |-> 0 ) ) |
| 49 | 6 | a1i | |- ( ( T. /\ x e. CC ) -> _i e. CC ) |
| 50 | simpr | |- ( ( T. /\ x e. CC ) -> x e. CC ) |
|
| 51 | 4 | dvmptid | |- ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 52 | 4 50 45 51 41 | dvmptcmul | |- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) ) |
| 53 | 6 | mulridi | |- ( _i x. 1 ) = _i |
| 54 | 53 | mpteq2i | |- ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i ) |
| 55 | 52 54 | eqtrdi | |- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) ) |
| 56 | 4 45 46 48 42 49 55 | dvmptsub | |- ( T. -> ( CC _D ( x e. CC |-> ( 1 - ( _i x. x ) ) ) ) = ( x e. CC |-> ( 0 - _i ) ) ) |
| 57 | df-neg | |- -u _i = ( 0 - _i ) |
|
| 58 | 57 | mpteq2i | |- ( x e. CC |-> -u _i ) = ( x e. CC |-> ( 0 - _i ) ) |
| 59 | 56 58 | eqtr4di | |- ( T. -> ( CC _D ( x e. CC |-> ( 1 - ( _i x. x ) ) ) ) = ( x e. CC |-> -u _i ) ) |
| 60 | 2 | ssrab3 | |- S C_ CC |
| 61 | 60 | a1i | |- ( T. -> S C_ CC ) |
| 62 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 63 | 62 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 64 | 63 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 65 | 1 2 | atansopn | |- S e. ( TopOpen ` CCfld ) |
| 66 | 65 | a1i | |- ( T. -> S e. ( TopOpen ` CCfld ) ) |
| 67 | 4 43 44 59 61 64 62 66 | dvmptres | |- ( T. -> ( CC _D ( x e. S |-> ( 1 - ( _i x. x ) ) ) ) = ( x e. S |-> -u _i ) ) |
| 68 | fssres | |- ( ( log : ( CC \ { 0 } ) --> ran log /\ D C_ ( CC \ { 0 } ) ) -> ( log |` D ) : D --> ran log ) |
|
| 69 | 36 31 68 | mp2an | |- ( log |` D ) : D --> ran log |
| 70 | 69 | a1i | |- ( T. -> ( log |` D ) : D --> ran log ) |
| 71 | 70 | feqmptd | |- ( T. -> ( log |` D ) = ( y e. D |-> ( ( log |` D ) ` y ) ) ) |
| 72 | fvres | |- ( y e. D -> ( ( log |` D ) ` y ) = ( log ` y ) ) |
|
| 73 | 72 | mpteq2ia | |- ( y e. D |-> ( ( log |` D ) ` y ) ) = ( y e. D |-> ( log ` y ) ) |
| 74 | 71 73 | eqtr2di | |- ( T. -> ( y e. D |-> ( log ` y ) ) = ( log |` D ) ) |
| 75 | 74 | oveq2d | |- ( T. -> ( CC _D ( y e. D |-> ( log ` y ) ) ) = ( CC _D ( log |` D ) ) ) |
| 76 | 1 | dvlog | |- ( CC _D ( log |` D ) ) = ( y e. D |-> ( 1 / y ) ) |
| 77 | 75 76 | eqtrdi | |- ( T. -> ( CC _D ( y e. D |-> ( log ` y ) ) ) = ( y e. D |-> ( 1 / y ) ) ) |
| 78 | fveq2 | |- ( y = ( 1 - ( _i x. x ) ) -> ( log ` y ) = ( log ` ( 1 - ( _i x. x ) ) ) ) |
|
| 79 | oveq2 | |- ( y = ( 1 - ( _i x. x ) ) -> ( 1 / y ) = ( 1 / ( 1 - ( _i x. x ) ) ) ) |
|
| 80 | 4 4 28 30 39 40 67 77 78 79 | dvmptco | |- ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 - ( _i x. x ) ) ) ) ) = ( x e. S |-> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) ) ) |
| 81 | irec | |- ( 1 / _i ) = -u _i |
|
| 82 | 81 | oveq2i | |- ( ( 1 / ( 1 - ( _i x. x ) ) ) x. ( 1 / _i ) ) = ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) |
| 83 | 6 | a1i | |- ( ( T. /\ x e. S ) -> _i e. CC ) |
| 84 | ine0 | |- _i =/= 0 |
|
| 85 | 84 | a1i | |- ( ( T. /\ x e. S ) -> _i =/= 0 ) |
| 86 | 16 83 17 85 | recdiv2d | |- ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) / _i ) = ( 1 / ( ( 1 - ( _i x. x ) ) x. _i ) ) ) |
| 87 | 16 17 | reccld | |- ( ( T. /\ x e. S ) -> ( 1 / ( 1 - ( _i x. x ) ) ) e. CC ) |
| 88 | 87 83 85 | divrecd | |- ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) / _i ) = ( ( 1 / ( 1 - ( _i x. x ) ) ) x. ( 1 / _i ) ) ) |
| 89 | 1cnd | |- ( ( T. /\ x e. S ) -> 1 e. CC ) |
|
| 90 | 89 14 83 | subdird | |- ( ( T. /\ x e. S ) -> ( ( 1 - ( _i x. x ) ) x. _i ) = ( ( 1 x. _i ) - ( ( _i x. x ) x. _i ) ) ) |
| 91 | 6 | mullidi | |- ( 1 x. _i ) = _i |
| 92 | 91 | a1i | |- ( ( T. /\ x e. S ) -> ( 1 x. _i ) = _i ) |
| 93 | 83 12 83 | mul32d | |- ( ( T. /\ x e. S ) -> ( ( _i x. x ) x. _i ) = ( ( _i x. _i ) x. x ) ) |
| 94 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 95 | 94 | oveq1i | |- ( ( _i x. _i ) x. x ) = ( -u 1 x. x ) |
| 96 | 12 | mulm1d | |- ( ( T. /\ x e. S ) -> ( -u 1 x. x ) = -u x ) |
| 97 | 95 96 | eqtrid | |- ( ( T. /\ x e. S ) -> ( ( _i x. _i ) x. x ) = -u x ) |
| 98 | 93 97 | eqtrd | |- ( ( T. /\ x e. S ) -> ( ( _i x. x ) x. _i ) = -u x ) |
| 99 | 92 98 | oveq12d | |- ( ( T. /\ x e. S ) -> ( ( 1 x. _i ) - ( ( _i x. x ) x. _i ) ) = ( _i - -u x ) ) |
| 100 | subneg | |- ( ( _i e. CC /\ x e. CC ) -> ( _i - -u x ) = ( _i + x ) ) |
|
| 101 | 6 12 100 | sylancr | |- ( ( T. /\ x e. S ) -> ( _i - -u x ) = ( _i + x ) ) |
| 102 | 90 99 101 | 3eqtrd | |- ( ( T. /\ x e. S ) -> ( ( 1 - ( _i x. x ) ) x. _i ) = ( _i + x ) ) |
| 103 | 83 12 102 | comraddd | |- ( ( T. /\ x e. S ) -> ( ( 1 - ( _i x. x ) ) x. _i ) = ( x + _i ) ) |
| 104 | 103 | oveq2d | |- ( ( T. /\ x e. S ) -> ( 1 / ( ( 1 - ( _i x. x ) ) x. _i ) ) = ( 1 / ( x + _i ) ) ) |
| 105 | 86 88 104 | 3eqtr3d | |- ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. ( 1 / _i ) ) = ( 1 / ( x + _i ) ) ) |
| 106 | 82 105 | eqtr3id | |- ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) = ( 1 / ( x + _i ) ) ) |
| 107 | 106 | mpteq2dva | |- ( T. -> ( x e. S |-> ( ( 1 / ( 1 - ( _i x. x ) ) ) x. -u _i ) ) = ( x e. S |-> ( 1 / ( x + _i ) ) ) ) |
| 108 | 80 107 | eqtrd | |- ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 - ( _i x. x ) ) ) ) ) = ( x e. S |-> ( 1 / ( x + _i ) ) ) ) |
| 109 | ovexd | |- ( ( T. /\ x e. S ) -> ( 1 / ( x - _i ) ) e. _V ) |
|
| 110 | 26 | simp3bi | |- ( x e. S -> ( 1 + ( _i x. x ) ) e. D ) |
| 111 | 110 | adantl | |- ( ( T. /\ x e. S ) -> ( 1 + ( _i x. x ) ) e. D ) |
| 112 | 5 42 19 | sylancr | |- ( ( T. /\ x e. CC ) -> ( 1 + ( _i x. x ) ) e. CC ) |
| 113 | 4 45 46 48 42 49 55 | dvmptadd | |- ( T. -> ( CC _D ( x e. CC |-> ( 1 + ( _i x. x ) ) ) ) = ( x e. CC |-> ( 0 + _i ) ) ) |
| 114 | 6 | addlidi | |- ( 0 + _i ) = _i |
| 115 | 114 | mpteq2i | |- ( x e. CC |-> ( 0 + _i ) ) = ( x e. CC |-> _i ) |
| 116 | 113 115 | eqtrdi | |- ( T. -> ( CC _D ( x e. CC |-> ( 1 + ( _i x. x ) ) ) ) = ( x e. CC |-> _i ) ) |
| 117 | 4 112 49 116 61 64 62 66 | dvmptres | |- ( T. -> ( CC _D ( x e. S |-> ( 1 + ( _i x. x ) ) ) ) = ( x e. S |-> _i ) ) |
| 118 | fveq2 | |- ( y = ( 1 + ( _i x. x ) ) -> ( log ` y ) = ( log ` ( 1 + ( _i x. x ) ) ) ) |
|
| 119 | oveq2 | |- ( y = ( 1 + ( _i x. x ) ) -> ( 1 / y ) = ( 1 / ( 1 + ( _i x. x ) ) ) ) |
|
| 120 | 4 4 111 83 39 40 117 77 118 119 | dvmptco | |- ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( x e. S |-> ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) ) ) |
| 121 | 89 20 83 21 85 | divdiv2d | |- ( ( T. /\ x e. S ) -> ( 1 / ( ( 1 + ( _i x. x ) ) / _i ) ) = ( ( 1 x. _i ) / ( 1 + ( _i x. x ) ) ) ) |
| 122 | 89 14 83 85 | divdird | |- ( ( T. /\ x e. S ) -> ( ( 1 + ( _i x. x ) ) / _i ) = ( ( 1 / _i ) + ( ( _i x. x ) / _i ) ) ) |
| 123 | 81 | a1i | |- ( ( T. /\ x e. S ) -> ( 1 / _i ) = -u _i ) |
| 124 | 12 83 85 | divcan3d | |- ( ( T. /\ x e. S ) -> ( ( _i x. x ) / _i ) = x ) |
| 125 | 123 124 | oveq12d | |- ( ( T. /\ x e. S ) -> ( ( 1 / _i ) + ( ( _i x. x ) / _i ) ) = ( -u _i + x ) ) |
| 126 | negicn | |- -u _i e. CC |
|
| 127 | addcom | |- ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i + x ) = ( x + -u _i ) ) |
|
| 128 | 126 12 127 | sylancr | |- ( ( T. /\ x e. S ) -> ( -u _i + x ) = ( x + -u _i ) ) |
| 129 | negsub | |- ( ( x e. CC /\ _i e. CC ) -> ( x + -u _i ) = ( x - _i ) ) |
|
| 130 | 12 6 129 | sylancl | |- ( ( T. /\ x e. S ) -> ( x + -u _i ) = ( x - _i ) ) |
| 131 | 128 130 | eqtrd | |- ( ( T. /\ x e. S ) -> ( -u _i + x ) = ( x - _i ) ) |
| 132 | 122 125 131 | 3eqtrd | |- ( ( T. /\ x e. S ) -> ( ( 1 + ( _i x. x ) ) / _i ) = ( x - _i ) ) |
| 133 | 132 | oveq2d | |- ( ( T. /\ x e. S ) -> ( 1 / ( ( 1 + ( _i x. x ) ) / _i ) ) = ( 1 / ( x - _i ) ) ) |
| 134 | 89 83 20 21 | div23d | |- ( ( T. /\ x e. S ) -> ( ( 1 x. _i ) / ( 1 + ( _i x. x ) ) ) = ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) ) |
| 135 | 121 133 134 | 3eqtr3rd | |- ( ( T. /\ x e. S ) -> ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) = ( 1 / ( x - _i ) ) ) |
| 136 | 135 | mpteq2dva | |- ( T. -> ( x e. S |-> ( ( 1 / ( 1 + ( _i x. x ) ) ) x. _i ) ) = ( x e. S |-> ( 1 / ( x - _i ) ) ) ) |
| 137 | 120 136 | eqtrd | |- ( T. -> ( CC _D ( x e. S |-> ( log ` ( 1 + ( _i x. x ) ) ) ) ) = ( x e. S |-> ( 1 / ( x - _i ) ) ) ) |
| 138 | 4 18 25 108 22 109 137 | dvmptsub | |- ( T. -> ( CC _D ( x e. S |-> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) = ( x e. S |-> ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) ) ) |
| 139 | subcl | |- ( ( x e. CC /\ _i e. CC ) -> ( x - _i ) e. CC ) |
|
| 140 | 12 6 139 | sylancl | |- ( ( T. /\ x e. S ) -> ( x - _i ) e. CC ) |
| 141 | addcl | |- ( ( x e. CC /\ _i e. CC ) -> ( x + _i ) e. CC ) |
|
| 142 | 12 6 141 | sylancl | |- ( ( T. /\ x e. S ) -> ( x + _i ) e. CC ) |
| 143 | 12 | sqcld | |- ( ( T. /\ x e. S ) -> ( x ^ 2 ) e. CC ) |
| 144 | addcl | |- ( ( 1 e. CC /\ ( x ^ 2 ) e. CC ) -> ( 1 + ( x ^ 2 ) ) e. CC ) |
|
| 145 | 5 143 144 | sylancr | |- ( ( T. /\ x e. S ) -> ( 1 + ( x ^ 2 ) ) e. CC ) |
| 146 | atandm4 | |- ( x e. dom arctan <-> ( x e. CC /\ ( 1 + ( x ^ 2 ) ) =/= 0 ) ) |
|
| 147 | 146 | simprbi | |- ( x e. dom arctan -> ( 1 + ( x ^ 2 ) ) =/= 0 ) |
| 148 | 9 147 | syl | |- ( ( T. /\ x e. S ) -> ( 1 + ( x ^ 2 ) ) =/= 0 ) |
| 149 | 140 142 145 148 | divsubdird | |- ( ( T. /\ x e. S ) -> ( ( ( x - _i ) - ( x + _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) - ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) |
| 150 | 130 | oveq1d | |- ( ( T. /\ x e. S ) -> ( ( x + -u _i ) - ( x + _i ) ) = ( ( x - _i ) - ( x + _i ) ) ) |
| 151 | 126 | a1i | |- ( ( T. /\ x e. S ) -> -u _i e. CC ) |
| 152 | 12 151 83 | pnpcand | |- ( ( T. /\ x e. S ) -> ( ( x + -u _i ) - ( x + _i ) ) = ( -u _i - _i ) ) |
| 153 | 150 152 | eqtr3d | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) - ( x + _i ) ) = ( -u _i - _i ) ) |
| 154 | 2cn | |- 2 e. CC |
|
| 155 | 154 6 84 | divreci | |- ( 2 / _i ) = ( 2 x. ( 1 / _i ) ) |
| 156 | 81 | oveq2i | |- ( 2 x. ( 1 / _i ) ) = ( 2 x. -u _i ) |
| 157 | 155 156 | eqtri | |- ( 2 / _i ) = ( 2 x. -u _i ) |
| 158 | 126 | 2timesi | |- ( 2 x. -u _i ) = ( -u _i + -u _i ) |
| 159 | 126 6 | negsubi | |- ( -u _i + -u _i ) = ( -u _i - _i ) |
| 160 | 157 158 159 | 3eqtri | |- ( 2 / _i ) = ( -u _i - _i ) |
| 161 | 153 160 | eqtr4di | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) - ( x + _i ) ) = ( 2 / _i ) ) |
| 162 | 161 | oveq1d | |- ( ( T. /\ x e. S ) -> ( ( ( x - _i ) - ( x + _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) |
| 163 | 140 | mulridd | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) x. 1 ) = ( x - _i ) ) |
| 164 | 140 142 | mulcomd | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) x. ( x + _i ) ) = ( ( x + _i ) x. ( x - _i ) ) ) |
| 165 | i2 | |- ( _i ^ 2 ) = -u 1 |
|
| 166 | 165 | oveq2i | |- ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x ^ 2 ) - -u 1 ) |
| 167 | subneg | |- ( ( ( x ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( x ^ 2 ) - -u 1 ) = ( ( x ^ 2 ) + 1 ) ) |
|
| 168 | 143 5 167 | sylancl | |- ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) - -u 1 ) = ( ( x ^ 2 ) + 1 ) ) |
| 169 | 166 168 | eqtrid | |- ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x ^ 2 ) + 1 ) ) |
| 170 | subsq | |- ( ( x e. CC /\ _i e. CC ) -> ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x + _i ) x. ( x - _i ) ) ) |
|
| 171 | 12 6 170 | sylancl | |- ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) - ( _i ^ 2 ) ) = ( ( x + _i ) x. ( x - _i ) ) ) |
| 172 | addcom | |- ( ( ( x ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( x ^ 2 ) + 1 ) = ( 1 + ( x ^ 2 ) ) ) |
|
| 173 | 143 5 172 | sylancl | |- ( ( T. /\ x e. S ) -> ( ( x ^ 2 ) + 1 ) = ( 1 + ( x ^ 2 ) ) ) |
| 174 | 169 171 173 | 3eqtr3d | |- ( ( T. /\ x e. S ) -> ( ( x + _i ) x. ( x - _i ) ) = ( 1 + ( x ^ 2 ) ) ) |
| 175 | 164 174 | eqtrd | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) x. ( x + _i ) ) = ( 1 + ( x ^ 2 ) ) ) |
| 176 | 163 175 | oveq12d | |- ( ( T. /\ x e. S ) -> ( ( ( x - _i ) x. 1 ) / ( ( x - _i ) x. ( x + _i ) ) ) = ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) ) |
| 177 | subneg | |- ( ( x e. CC /\ _i e. CC ) -> ( x - -u _i ) = ( x + _i ) ) |
|
| 178 | 12 6 177 | sylancl | |- ( ( T. /\ x e. S ) -> ( x - -u _i ) = ( x + _i ) ) |
| 179 | atandm | |- ( x e. dom arctan <-> ( x e. CC /\ x =/= -u _i /\ x =/= _i ) ) |
|
| 180 | 9 179 | sylib | |- ( ( T. /\ x e. S ) -> ( x e. CC /\ x =/= -u _i /\ x =/= _i ) ) |
| 181 | 180 | simp2d | |- ( ( T. /\ x e. S ) -> x =/= -u _i ) |
| 182 | subeq0 | |- ( ( x e. CC /\ -u _i e. CC ) -> ( ( x - -u _i ) = 0 <-> x = -u _i ) ) |
|
| 183 | 182 | necon3bid | |- ( ( x e. CC /\ -u _i e. CC ) -> ( ( x - -u _i ) =/= 0 <-> x =/= -u _i ) ) |
| 184 | 12 126 183 | sylancl | |- ( ( T. /\ x e. S ) -> ( ( x - -u _i ) =/= 0 <-> x =/= -u _i ) ) |
| 185 | 181 184 | mpbird | |- ( ( T. /\ x e. S ) -> ( x - -u _i ) =/= 0 ) |
| 186 | 178 185 | eqnetrrd | |- ( ( T. /\ x e. S ) -> ( x + _i ) =/= 0 ) |
| 187 | 180 | simp3d | |- ( ( T. /\ x e. S ) -> x =/= _i ) |
| 188 | subeq0 | |- ( ( x e. CC /\ _i e. CC ) -> ( ( x - _i ) = 0 <-> x = _i ) ) |
|
| 189 | 188 | necon3bid | |- ( ( x e. CC /\ _i e. CC ) -> ( ( x - _i ) =/= 0 <-> x =/= _i ) ) |
| 190 | 12 6 189 | sylancl | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) =/= 0 <-> x =/= _i ) ) |
| 191 | 187 190 | mpbird | |- ( ( T. /\ x e. S ) -> ( x - _i ) =/= 0 ) |
| 192 | 89 142 140 186 191 | divcan5d | |- ( ( T. /\ x e. S ) -> ( ( ( x - _i ) x. 1 ) / ( ( x - _i ) x. ( x + _i ) ) ) = ( 1 / ( x + _i ) ) ) |
| 193 | 176 192 | eqtr3d | |- ( ( T. /\ x e. S ) -> ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) = ( 1 / ( x + _i ) ) ) |
| 194 | 142 | mulridd | |- ( ( T. /\ x e. S ) -> ( ( x + _i ) x. 1 ) = ( x + _i ) ) |
| 195 | 194 174 | oveq12d | |- ( ( T. /\ x e. S ) -> ( ( ( x + _i ) x. 1 ) / ( ( x + _i ) x. ( x - _i ) ) ) = ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) ) |
| 196 | 89 140 142 191 186 | divcan5d | |- ( ( T. /\ x e. S ) -> ( ( ( x + _i ) x. 1 ) / ( ( x + _i ) x. ( x - _i ) ) ) = ( 1 / ( x - _i ) ) ) |
| 197 | 195 196 | eqtr3d | |- ( ( T. /\ x e. S ) -> ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) = ( 1 / ( x - _i ) ) ) |
| 198 | 193 197 | oveq12d | |- ( ( T. /\ x e. S ) -> ( ( ( x - _i ) / ( 1 + ( x ^ 2 ) ) ) - ( ( x + _i ) / ( 1 + ( x ^ 2 ) ) ) ) = ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) ) |
| 199 | 149 162 198 | 3eqtr3rd | |- ( ( T. /\ x e. S ) -> ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) = ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) |
| 200 | 199 | mpteq2dva | |- ( T. -> ( x e. S |-> ( ( 1 / ( x + _i ) ) - ( 1 / ( x - _i ) ) ) ) = ( x e. S |-> ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) |
| 201 | 138 200 | eqtrd | |- ( T. -> ( CC _D ( x e. S |-> ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) = ( x e. S |-> ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) |
| 202 | halfcl | |- ( _i e. CC -> ( _i / 2 ) e. CC ) |
|
| 203 | 6 202 | mp1i | |- ( T. -> ( _i / 2 ) e. CC ) |
| 204 | 4 23 24 201 203 | dvmptcmul | |- ( T. -> ( CC _D ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) ) |
| 205 | df-atan | |- arctan = ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
|
| 206 | 205 | reseq1i | |- ( arctan |` S ) = ( ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |` S ) |
| 207 | atanf | |- arctan : ( CC \ { -u _i , _i } ) --> CC |
|
| 208 | 207 | fdmi | |- dom arctan = ( CC \ { -u _i , _i } ) |
| 209 | 7 208 | sseqtri | |- S C_ ( CC \ { -u _i , _i } ) |
| 210 | resmpt | |- ( S C_ ( CC \ { -u _i , _i } ) -> ( ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) |
|
| 211 | 209 210 | ax-mp | |- ( ( x e. ( CC \ { -u _i , _i } ) |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
| 212 | 206 211 | eqtri | |- ( arctan |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) |
| 213 | 212 | a1i | |- ( T. -> ( arctan |` S ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) |
| 214 | 213 | oveq2d | |- ( T. -> ( CC _D ( arctan |` S ) ) = ( CC _D ( x e. S |-> ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. x ) ) ) - ( log ` ( 1 + ( _i x. x ) ) ) ) ) ) ) ) |
| 215 | 2ne0 | |- 2 =/= 0 |
|
| 216 | divcan6 | |- ( ( ( _i e. CC /\ _i =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( _i / 2 ) x. ( 2 / _i ) ) = 1 ) |
|
| 217 | 6 84 154 215 216 | mp4an | |- ( ( _i / 2 ) x. ( 2 / _i ) ) = 1 |
| 218 | 217 | oveq1i | |- ( ( ( _i / 2 ) x. ( 2 / _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( 1 / ( 1 + ( x ^ 2 ) ) ) |
| 219 | 6 202 | mp1i | |- ( ( T. /\ x e. S ) -> ( _i / 2 ) e. CC ) |
| 220 | 154 6 84 | divcli | |- ( 2 / _i ) e. CC |
| 221 | 220 | a1i | |- ( ( T. /\ x e. S ) -> ( 2 / _i ) e. CC ) |
| 222 | 219 221 145 148 | divassd | |- ( ( T. /\ x e. S ) -> ( ( ( _i / 2 ) x. ( 2 / _i ) ) / ( 1 + ( x ^ 2 ) ) ) = ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) |
| 223 | 218 222 | eqtr3id | |- ( ( T. /\ x e. S ) -> ( 1 / ( 1 + ( x ^ 2 ) ) ) = ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) |
| 224 | 223 | mpteq2dva | |- ( T. -> ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) = ( x e. S |-> ( ( _i / 2 ) x. ( ( 2 / _i ) / ( 1 + ( x ^ 2 ) ) ) ) ) ) |
| 225 | 204 214 224 | 3eqtr4d | |- ( T. -> ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) ) |
| 226 | 225 | mptru | |- ( CC _D ( arctan |` S ) ) = ( x e. S |-> ( 1 / ( 1 + ( x ^ 2 ) ) ) ) |