This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Since the property is a little lengthy, we abbreviate A e. CC /\ A =/= -ui /\ A =/= i as A e. dom arctan . This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atandm | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( ℂ ∖ { - i , i } ) ↔ ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ { - i , i } ) ) | |
| 2 | elprg | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ∈ { - i , i } ↔ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝐴 ∈ ℂ → ( ¬ 𝐴 ∈ { - i , i } ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) ) |
| 4 | neanior | ⊢ ( ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ¬ ( 𝐴 = - i ∨ 𝐴 = i ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( 𝐴 ∈ ℂ → ( ¬ 𝐴 ∈ { - i , i } ↔ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 6 | 5 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ { - i , i } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 7 | 1 6 | bitri | ⊢ ( 𝐴 ∈ ( ℂ ∖ { - i , i } ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) |
| 8 | ovex | ⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ∈ V | |
| 9 | df-atan | ⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) | |
| 10 | 8 9 | dmmpti | ⊢ dom arctan = ( ℂ ∖ { - i , i } ) |
| 11 | 10 | eleq2i | ⊢ ( 𝐴 ∈ dom arctan ↔ 𝐴 ∈ ( ℂ ∖ { - i , i } ) ) |
| 12 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ↔ ( 𝐴 ∈ ℂ ∧ ( 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) ) | |
| 13 | 7 11 12 | 3bitr4i | ⊢ ( 𝐴 ∈ dom arctan ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ - i ∧ 𝐴 ≠ i ) ) |