This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | ||
| Assertion | atansssdm | ⊢ 𝑆 ⊆ dom arctan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | |
| 3 | rabss | ⊢ ( { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } ⊆ dom arctan ↔ ∀ 𝑦 ∈ ℂ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 → 𝑦 ∈ dom arctan ) ) | |
| 4 | simpl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) → 𝑦 ∈ ℂ ) | |
| 5 | 1 | logdmn0 | ⊢ ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 → ( 1 + ( 𝑦 ↑ 2 ) ) ≠ 0 ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) → ( 1 + ( 𝑦 ↑ 2 ) ) ≠ 0 ) |
| 7 | atandm4 | ⊢ ( 𝑦 ∈ dom arctan ↔ ( 𝑦 ∈ ℂ ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ≠ 0 ) ) | |
| 8 | 4 6 7 | sylanbrc | ⊢ ( ( 𝑦 ∈ ℂ ∧ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 ) → 𝑦 ∈ dom arctan ) |
| 9 | 8 | ex | ⊢ ( 𝑦 ∈ ℂ → ( ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 → 𝑦 ∈ dom arctan ) ) |
| 10 | 3 9 | mprgbir | ⊢ { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } ⊆ dom arctan |
| 11 | 2 10 | eqsstri | ⊢ 𝑆 ⊆ dom arctan |