This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codoamin of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atanf | ⊢ arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-atan | ⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) | |
| 2 | ovex | ⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ∈ V | |
| 3 | 2 1 | dmmpti | ⊢ dom arctan = ( ℂ ∖ { - i , i } ) |
| 4 | 3 | eleq2i | ⊢ ( 𝑥 ∈ dom arctan ↔ 𝑥 ∈ ( ℂ ∖ { - i , i } ) ) |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | halfcl | ⊢ ( i ∈ ℂ → ( i / 2 ) ∈ ℂ ) | |
| 7 | 5 6 | ax-mp | ⊢ ( i / 2 ) ∈ ℂ |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | atandm2 | ⊢ ( 𝑥 ∈ dom arctan ↔ ( 𝑥 ∈ ℂ ∧ ( 1 − ( i · 𝑥 ) ) ≠ 0 ∧ ( 1 + ( i · 𝑥 ) ) ≠ 0 ) ) | |
| 10 | 9 | simp1bi | ⊢ ( 𝑥 ∈ dom arctan → 𝑥 ∈ ℂ ) |
| 11 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( i · 𝑥 ) ∈ ℂ ) | |
| 12 | 5 10 11 | sylancr | ⊢ ( 𝑥 ∈ dom arctan → ( i · 𝑥 ) ∈ ℂ ) |
| 13 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝑥 ) ∈ ℂ ) → ( 1 − ( i · 𝑥 ) ) ∈ ℂ ) | |
| 14 | 8 12 13 | sylancr | ⊢ ( 𝑥 ∈ dom arctan → ( 1 − ( i · 𝑥 ) ) ∈ ℂ ) |
| 15 | 9 | simp2bi | ⊢ ( 𝑥 ∈ dom arctan → ( 1 − ( i · 𝑥 ) ) ≠ 0 ) |
| 16 | 14 15 | logcld | ⊢ ( 𝑥 ∈ dom arctan → ( log ‘ ( 1 − ( i · 𝑥 ) ) ) ∈ ℂ ) |
| 17 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝑥 ) ∈ ℂ ) → ( 1 + ( i · 𝑥 ) ) ∈ ℂ ) | |
| 18 | 8 12 17 | sylancr | ⊢ ( 𝑥 ∈ dom arctan → ( 1 + ( i · 𝑥 ) ) ∈ ℂ ) |
| 19 | 9 | simp3bi | ⊢ ( 𝑥 ∈ dom arctan → ( 1 + ( i · 𝑥 ) ) ≠ 0 ) |
| 20 | 18 19 | logcld | ⊢ ( 𝑥 ∈ dom arctan → ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ∈ ℂ ) |
| 21 | 16 20 | subcld | ⊢ ( 𝑥 ∈ dom arctan → ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ∈ ℂ ) |
| 22 | mulcl | ⊢ ( ( ( i / 2 ) ∈ ℂ ∧ ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ∈ ℂ ) → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ∈ ℂ ) | |
| 23 | 7 21 22 | sylancr | ⊢ ( 𝑥 ∈ dom arctan → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 24 | 4 23 | sylbir | ⊢ ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) → ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ∈ ℂ ) |
| 25 | 1 24 | fmpti | ⊢ arctan : ( ℂ ∖ { - i , i } ) ⟶ ℂ |