This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the arctangent function. See also remarks for df-asin . Unlike arcsin and arccos , this function is not defined everywhere, because tan ( z ) =/= +-i for all z e. CC . For all other z , there is a formula for arctan ( z ) in terms of log , and we take that as the definition. Branch points are at +- i ; branch cuts are on the pure imaginary axis not between -ui and i , which is to say { z e. CC | ( _i x. z ) e. ( -oo , -u 1 ) u. ( 1 , +oo ) } . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-atan | ⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | catan | ⊢ arctan | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | cc | ⊢ ℂ | |
| 3 | ci | ⊢ i | |
| 4 | 3 | cneg | ⊢ - i |
| 5 | 4 3 | cpr | ⊢ { - i , i } |
| 6 | 2 5 | cdif | ⊢ ( ℂ ∖ { - i , i } ) |
| 7 | cdiv | ⊢ / | |
| 8 | c2 | ⊢ 2 | |
| 9 | 3 8 7 | co | ⊢ ( i / 2 ) |
| 10 | cmul | ⊢ · | |
| 11 | clog | ⊢ log | |
| 12 | c1 | ⊢ 1 | |
| 13 | cmin | ⊢ − | |
| 14 | 1 | cv | ⊢ 𝑥 |
| 15 | 3 14 10 | co | ⊢ ( i · 𝑥 ) |
| 16 | 12 15 13 | co | ⊢ ( 1 − ( i · 𝑥 ) ) |
| 17 | 16 11 | cfv | ⊢ ( log ‘ ( 1 − ( i · 𝑥 ) ) ) |
| 18 | caddc | ⊢ + | |
| 19 | 12 15 18 | co | ⊢ ( 1 + ( i · 𝑥 ) ) |
| 20 | 19 11 | cfv | ⊢ ( log ‘ ( 1 + ( i · 𝑥 ) ) ) |
| 21 | 17 20 13 | co | ⊢ ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) |
| 22 | 9 21 10 | co | ⊢ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) |
| 23 | 1 6 22 | cmpt | ⊢ ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) |
| 24 | 0 23 | wceq | ⊢ arctan = ( 𝑥 ∈ ( ℂ ∖ { - i , i } ) ↦ ( ( i / 2 ) · ( ( log ‘ ( 1 − ( i · 𝑥 ) ) ) − ( log ‘ ( 1 + ( i · 𝑥 ) ) ) ) ) ) |