This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: It suffices to show that 1 -i A and 1 + i A are in the continuity domain of log to show that A is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | ||
| Assertion | atans2 | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atansopn.d | ⊢ 𝐷 = ( ℂ ∖ ( -∞ (,] 0 ) ) | |
| 2 | atansopn.s | ⊢ 𝑆 = { 𝑦 ∈ ℂ ∣ ( 1 + ( 𝑦 ↑ 2 ) ) ∈ 𝐷 } | |
| 3 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 5 | 4 | sqsqrtd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( √ ‘ ( 𝐴 ↑ 2 ) ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 6 | 5 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 𝐴 ↑ 2 ) = ( ( √ ‘ ( 𝐴 ↑ 2 ) ) ↑ 2 ) ) |
| 7 | 4 | sqrtcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 | sqeqor | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℂ ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ ( 𝐴 ↑ 2 ) ) ↑ 2 ) ↔ ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) ∨ 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 9 | 7 8 | syldan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 𝐴 ↑ 2 ) = ( ( √ ‘ ( 𝐴 ↑ 2 ) ) ↑ 2 ) ↔ ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) ∨ 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 10 | 6 9 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) ∨ 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) |
| 11 | 1re | ⊢ 1 ∈ ℝ | |
| 12 | 11 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 1 ∈ ℝ ) |
| 13 | 4 | negnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → - - ( 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 14 | 13 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( √ ‘ - - ( 𝐴 ↑ 2 ) ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) ) |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | pncan2 | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( ( 1 + ( 𝐴 ↑ 2 ) ) − 1 ) = ( 𝐴 ↑ 2 ) ) | |
| 17 | 15 4 16 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( 𝐴 ↑ 2 ) ) − 1 ) = ( 𝐴 ↑ 2 ) ) |
| 18 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) | |
| 19 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 20 | 0re | ⊢ 0 ∈ ℝ | |
| 21 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝐴 ↑ 2 ) ) ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≤ 0 ) ) ) | |
| 22 | 19 20 21 | mp2an | ⊢ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝐴 ↑ 2 ) ) ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≤ 0 ) ) |
| 23 | 18 22 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( 𝐴 ↑ 2 ) ) ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ≤ 0 ) ) |
| 24 | 23 | simp1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 25 | resubcl | ⊢ ( ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 + ( 𝐴 ↑ 2 ) ) − 1 ) ∈ ℝ ) | |
| 26 | 24 11 25 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( 𝐴 ↑ 2 ) ) − 1 ) ∈ ℝ ) |
| 27 | 17 26 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 28 | 27 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → - ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 29 | 0red | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 0 ∈ ℝ ) | |
| 30 | 0le1 | ⊢ 0 ≤ 1 | |
| 31 | 30 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 0 ≤ 1 ) |
| 32 | subneg | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − - ( 𝐴 ↑ 2 ) ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) | |
| 33 | 15 4 32 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − - ( 𝐴 ↑ 2 ) ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 34 | 23 | simp3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( 𝐴 ↑ 2 ) ) ≤ 0 ) |
| 35 | 33 34 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − - ( 𝐴 ↑ 2 ) ) ≤ 0 ) |
| 36 | suble0 | ⊢ ( ( 1 ∈ ℝ ∧ - ( 𝐴 ↑ 2 ) ∈ ℝ ) → ( ( 1 − - ( 𝐴 ↑ 2 ) ) ≤ 0 ↔ 1 ≤ - ( 𝐴 ↑ 2 ) ) ) | |
| 37 | 11 28 36 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 − - ( 𝐴 ↑ 2 ) ) ≤ 0 ↔ 1 ≤ - ( 𝐴 ↑ 2 ) ) ) |
| 38 | 35 37 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 1 ≤ - ( 𝐴 ↑ 2 ) ) |
| 39 | 29 12 28 31 38 | letrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 0 ≤ - ( 𝐴 ↑ 2 ) ) |
| 40 | 28 39 | sqrtnegd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( √ ‘ - - ( 𝐴 ↑ 2 ) ) = ( i · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) |
| 41 | 14 40 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( i · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) |
| 42 | 41 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) = ( i · ( i · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) ) |
| 43 | ax-icn | ⊢ i ∈ ℂ | |
| 44 | 43 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → i ∈ ℂ ) |
| 45 | 28 39 | resqrtcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( √ ‘ - ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 46 | 45 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( √ ‘ - ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 47 | 44 44 46 | mulassd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( i · i ) · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) = ( i · ( i · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) ) |
| 48 | ixi | ⊢ ( i · i ) = - 1 | |
| 49 | 48 | oveq1i | ⊢ ( ( i · i ) · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) = ( - 1 · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) |
| 50 | 46 | mulm1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( - 1 · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) = - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) |
| 51 | 49 50 | eqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( i · i ) · ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) = - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) |
| 52 | 42 47 51 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) = - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) |
| 53 | 45 | renegcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 54 | 52 53 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
| 55 | 12 54 | readdcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ ) |
| 56 | 55 | mnfltd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → -∞ < ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 57 | 52 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) = ( 1 + - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) |
| 58 | negsub | ⊢ ( ( 1 ∈ ℂ ∧ ( √ ‘ - ( 𝐴 ↑ 2 ) ) ∈ ℂ ) → ( 1 + - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) = ( 1 − ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) | |
| 59 | 15 46 58 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + - ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) = ( 1 − ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) |
| 60 | 57 59 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) = ( 1 − ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) |
| 61 | sq1 | ⊢ ( 1 ↑ 2 ) = 1 | |
| 62 | 61 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 ↑ 2 ) = 1 ) |
| 63 | 28 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → - ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 64 | 63 | sqsqrtd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( √ ‘ - ( 𝐴 ↑ 2 ) ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 65 | 38 62 64 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 ↑ 2 ) ≤ ( ( √ ‘ - ( 𝐴 ↑ 2 ) ) ↑ 2 ) ) |
| 66 | 28 39 | sqrtge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 0 ≤ ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) |
| 67 | 12 45 31 66 | le2sqd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 ≤ ( √ ‘ - ( 𝐴 ↑ 2 ) ) ↔ ( 1 ↑ 2 ) ≤ ( ( √ ‘ - ( 𝐴 ↑ 2 ) ) ↑ 2 ) ) ) |
| 68 | 65 67 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → 1 ≤ ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) |
| 69 | 12 45 | suble0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 − ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ≤ 0 ↔ 1 ≤ ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ) |
| 70 | 68 69 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( √ ‘ - ( 𝐴 ↑ 2 ) ) ) ≤ 0 ) |
| 71 | 60 70 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ≤ 0 ) |
| 72 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ ∧ -∞ < ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∧ ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ≤ 0 ) ) ) | |
| 73 | 19 20 72 | mp2an | ⊢ ( ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ ∧ -∞ < ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∧ ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ≤ 0 ) ) |
| 74 | 55 56 71 73 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ( -∞ (,] 0 ) ) |
| 75 | oveq2 | ⊢ ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( i · 𝐴 ) = ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) | |
| 76 | 75 | oveq2d | ⊢ ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( 1 + ( i · 𝐴 ) ) = ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 77 | 76 | eleq1d | ⊢ ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ↔ ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 78 | 74 77 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 79 | mulneg2 | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℂ ) → ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) = - ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) | |
| 80 | 43 7 79 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) = - ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) |
| 81 | 80 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) = ( 1 − - ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 82 | mulcl | ⊢ ( ( i ∈ ℂ ∧ ( √ ‘ ( 𝐴 ↑ 2 ) ) ∈ ℂ ) → ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) | |
| 83 | 43 7 82 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 84 | subneg | ⊢ ( ( 1 ∈ ℂ ∧ ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) → ( 1 − - ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) = ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) | |
| 85 | 15 83 84 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − - ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) = ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 86 | 81 85 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) = ( 1 + ( i · ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 87 | 86 74 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ( -∞ (,] 0 ) ) |
| 88 | oveq2 | ⊢ ( 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( i · 𝐴 ) = ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) | |
| 89 | 88 | oveq2d | ⊢ ( 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( 1 − ( i · 𝐴 ) ) = ( 1 − ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ) |
| 90 | 89 | eleq1d | ⊢ ( 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ↔ ( 1 − ( i · - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 91 | 87 90 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 92 | 78 91 | orim12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 𝐴 = ( √ ‘ ( 𝐴 ↑ 2 ) ) ∨ 𝐴 = - ( √ ‘ ( 𝐴 ↑ 2 ) ) ) → ( ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) ) |
| 93 | 10 92 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 94 | 93 | orcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 95 | 61 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 ↑ 2 ) = 1 ) |
| 96 | sqmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) | |
| 97 | 43 96 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 98 | i2 | ⊢ ( i ↑ 2 ) = - 1 | |
| 99 | 98 | oveq1i | ⊢ ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = ( - 1 · ( 𝐴 ↑ 2 ) ) |
| 100 | 3 | mulm1d | ⊢ ( 𝐴 ∈ ℂ → ( - 1 · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 101 | 99 100 | eqtrid | ⊢ ( 𝐴 ∈ ℂ → ( ( i ↑ 2 ) · ( 𝐴 ↑ 2 ) ) = - ( 𝐴 ↑ 2 ) ) |
| 102 | 97 101 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) ↑ 2 ) = - ( 𝐴 ↑ 2 ) ) |
| 103 | 95 102 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 ↑ 2 ) − ( ( i · 𝐴 ) ↑ 2 ) ) = ( 1 − - ( 𝐴 ↑ 2 ) ) ) |
| 104 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 105 | 43 104 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 106 | subsq | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( ( 1 ↑ 2 ) − ( ( i · 𝐴 ) ↑ 2 ) ) = ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ) | |
| 107 | 15 105 106 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 ↑ 2 ) − ( ( i · 𝐴 ) ↑ 2 ) ) = ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ) |
| 108 | 15 3 32 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − - ( 𝐴 ↑ 2 ) ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 109 | 103 107 108 | 3eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 110 | 109 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) = ( 1 + ( 𝐴 ↑ 2 ) ) ) |
| 111 | 2cn | ⊢ 2 ∈ ℂ | |
| 112 | 111 | a1i | ⊢ ( 𝐴 ∈ ℂ → 2 ∈ ℂ ) |
| 113 | 15 | a1i | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 114 | 112 113 105 | subsubd | ⊢ ( 𝐴 ∈ ℂ → ( 2 − ( 1 − ( i · 𝐴 ) ) ) = ( ( 2 − 1 ) + ( i · 𝐴 ) ) ) |
| 115 | 2m1e1 | ⊢ ( 2 − 1 ) = 1 | |
| 116 | 115 | oveq1i | ⊢ ( ( 2 − 1 ) + ( i · 𝐴 ) ) = ( 1 + ( i · 𝐴 ) ) |
| 117 | 114 116 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 2 − ( 1 − ( i · 𝐴 ) ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 118 | 117 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 2 − ( 1 − ( i · 𝐴 ) ) ) = ( 1 + ( i · 𝐴 ) ) ) |
| 119 | 2re | ⊢ 2 ∈ ℝ | |
| 120 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) | |
| 121 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 − ( i · 𝐴 ) ) ∈ ℝ ∧ -∞ < ( 1 − ( i · 𝐴 ) ) ∧ ( 1 − ( i · 𝐴 ) ) ≤ 0 ) ) ) | |
| 122 | 19 20 121 | mp2an | ⊢ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 − ( i · 𝐴 ) ) ∈ ℝ ∧ -∞ < ( 1 − ( i · 𝐴 ) ) ∧ ( 1 − ( i · 𝐴 ) ) ≤ 0 ) ) |
| 123 | 120 122 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 − ( i · 𝐴 ) ) ∈ ℝ ∧ -∞ < ( 1 − ( i · 𝐴 ) ) ∧ ( 1 − ( i · 𝐴 ) ) ≤ 0 ) ) |
| 124 | 123 | simp1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ℝ ) |
| 125 | resubcl | ⊢ ( ( 2 ∈ ℝ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ℝ ) → ( 2 − ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ) | |
| 126 | 119 124 125 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 2 − ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 127 | 118 126 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℝ ) |
| 128 | 127 124 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 129 | 128 | mnfltd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → -∞ < ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ) |
| 130 | 123 | simp3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · 𝐴 ) ) ≤ 0 ) |
| 131 | 0red | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 0 ∈ ℝ ) | |
| 132 | 119 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 2 ∈ ℝ ) |
| 133 | 2pos | ⊢ 0 < 2 | |
| 134 | 133 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 0 < 2 ) |
| 135 | 111 | subid1i | ⊢ ( 2 − 0 ) = 2 |
| 136 | 124 131 132 130 | lesub2dd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 2 − 0 ) ≤ ( 2 − ( 1 − ( i · 𝐴 ) ) ) ) |
| 137 | 135 136 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 2 ≤ ( 2 − ( 1 − ( i · 𝐴 ) ) ) ) |
| 138 | 137 118 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 2 ≤ ( 1 + ( i · 𝐴 ) ) ) |
| 139 | 131 132 127 134 138 | ltletrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 0 < ( 1 + ( i · 𝐴 ) ) ) |
| 140 | lemul2 | ⊢ ( ( ( 1 − ( i · 𝐴 ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( 1 + ( i · 𝐴 ) ) ∈ ℝ ∧ 0 < ( 1 + ( i · 𝐴 ) ) ) ) → ( ( 1 − ( i · 𝐴 ) ) ≤ 0 ↔ ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ ( ( 1 + ( i · 𝐴 ) ) · 0 ) ) ) | |
| 141 | 124 131 127 139 140 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 − ( i · 𝐴 ) ) ≤ 0 ↔ ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ ( ( 1 + ( i · 𝐴 ) ) · 0 ) ) ) |
| 142 | 130 141 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ ( ( 1 + ( i · 𝐴 ) ) · 0 ) ) |
| 143 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) | |
| 144 | 15 105 143 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 145 | 144 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℂ ) |
| 146 | 145 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · 0 ) = 0 ) |
| 147 | 142 146 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ 0 ) |
| 148 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ∧ -∞ < ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∧ ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ 0 ) ) ) | |
| 149 | 19 20 148 | mp2an | ⊢ ( ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ∧ -∞ < ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∧ ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ 0 ) ) |
| 150 | 128 129 147 149 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ( -∞ (,] 0 ) ) |
| 151 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) | |
| 152 | elioc2 | ⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ ) → ( ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( i · 𝐴 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( i · 𝐴 ) ) ∧ ( 1 + ( i · 𝐴 ) ) ≤ 0 ) ) ) | |
| 153 | 19 20 152 | mp2an | ⊢ ( ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 + ( i · 𝐴 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( i · 𝐴 ) ) ∧ ( 1 + ( i · 𝐴 ) ) ≤ 0 ) ) |
| 154 | 151 153 | sylib | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) ∈ ℝ ∧ -∞ < ( 1 + ( i · 𝐴 ) ) ∧ ( 1 + ( i · 𝐴 ) ) ≤ 0 ) ) |
| 155 | 154 | simp1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · 𝐴 ) ) ∈ ℝ ) |
| 156 | 112 113 105 | subsub4d | ⊢ ( 𝐴 ∈ ℂ → ( ( 2 − 1 ) − ( i · 𝐴 ) ) = ( 2 − ( 1 + ( i · 𝐴 ) ) ) ) |
| 157 | 115 | oveq1i | ⊢ ( ( 2 − 1 ) − ( i · 𝐴 ) ) = ( 1 − ( i · 𝐴 ) ) |
| 158 | 156 157 | eqtr3di | ⊢ ( 𝐴 ∈ ℂ → ( 2 − ( 1 + ( i · 𝐴 ) ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 159 | 158 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 2 − ( 1 + ( i · 𝐴 ) ) ) = ( 1 − ( i · 𝐴 ) ) ) |
| 160 | resubcl | ⊢ ( ( 2 ∈ ℝ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ℝ ) → ( 2 − ( 1 + ( i · 𝐴 ) ) ) ∈ ℝ ) | |
| 161 | 119 155 160 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 2 − ( 1 + ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 162 | 159 161 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ℝ ) |
| 163 | 155 162 | remulcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ℝ ) |
| 164 | 163 | mnfltd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → -∞ < ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ) |
| 165 | 154 | simp3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 + ( i · 𝐴 ) ) ≤ 0 ) |
| 166 | 0red | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 0 ∈ ℝ ) | |
| 167 | 119 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 2 ∈ ℝ ) |
| 168 | 133 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 0 < 2 ) |
| 169 | 155 166 167 165 | lesub2dd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 2 − 0 ) ≤ ( 2 − ( 1 + ( i · 𝐴 ) ) ) ) |
| 170 | 135 169 | eqbrtrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 2 ≤ ( 2 − ( 1 + ( i · 𝐴 ) ) ) ) |
| 171 | 170 159 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 2 ≤ ( 1 − ( i · 𝐴 ) ) ) |
| 172 | 166 167 162 168 171 | ltletrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → 0 < ( 1 − ( i · 𝐴 ) ) ) |
| 173 | lemul1 | ⊢ ( ( ( 1 + ( i · 𝐴 ) ) ∈ ℝ ∧ 0 ∈ ℝ ∧ ( ( 1 − ( i · 𝐴 ) ) ∈ ℝ ∧ 0 < ( 1 − ( i · 𝐴 ) ) ) ) → ( ( 1 + ( i · 𝐴 ) ) ≤ 0 ↔ ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ ( 0 · ( 1 − ( i · 𝐴 ) ) ) ) ) | |
| 174 | 155 166 162 172 173 | syl112anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) ≤ 0 ↔ ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ ( 0 · ( 1 − ( i · 𝐴 ) ) ) ) ) |
| 175 | 165 174 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ ( 0 · ( 1 − ( i · 𝐴 ) ) ) ) |
| 176 | 162 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 177 | 176 | mul02d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( 0 · ( 1 − ( i · 𝐴 ) ) ) = 0 ) |
| 178 | 175 177 | breqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ≤ 0 ) |
| 179 | 163 164 178 149 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ( -∞ (,] 0 ) ) |
| 180 | 150 179 | jaodan | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) → ( ( 1 + ( i · 𝐴 ) ) · ( 1 − ( i · 𝐴 ) ) ) ∈ ( -∞ (,] 0 ) ) |
| 181 | 110 180 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) |
| 182 | 94 181 | impbida | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) ) |
| 183 | 182 | notbid | ⊢ ( 𝐴 ∈ ℂ → ( ¬ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ¬ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) ) |
| 184 | ioran | ⊢ ( ¬ ( ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∨ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ↔ ( ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∧ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) | |
| 185 | 183 184 | bitrdi | ⊢ ( 𝐴 ∈ ℂ → ( ¬ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ↔ ( ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∧ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) ) |
| 186 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) | |
| 187 | 15 3 186 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 188 | 1 | eleq2i | ⊢ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ↔ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 189 | eldif | ⊢ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ∧ ¬ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) ) | |
| 190 | 188 189 | bitri | ⊢ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ↔ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ ∧ ¬ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 191 | 190 | baib | ⊢ ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ℂ → ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ↔ ¬ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 192 | 187 191 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ↔ ¬ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 193 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( i · 𝐴 ) ∈ ℂ ) → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) | |
| 194 | 15 105 193 | sylancr | ⊢ ( 𝐴 ∈ ℂ → ( 1 − ( i · 𝐴 ) ) ∈ ℂ ) |
| 195 | 1 | eleq2i | ⊢ ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ↔ ( 1 − ( i · 𝐴 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 196 | eldif | ⊢ ( ( 1 − ( i · 𝐴 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) | |
| 197 | 195 196 | bitri | ⊢ ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ↔ ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ ∧ ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 198 | 197 | baib | ⊢ ( ( 1 − ( i · 𝐴 ) ) ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ↔ ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 199 | 194 198 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ↔ ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 200 | 1 | eleq2i | ⊢ ( ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ↔ ( 1 + ( i · 𝐴 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
| 201 | eldif | ⊢ ( ( 1 + ( i · 𝐴 ) ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) | |
| 202 | 200 201 | bitri | ⊢ ( ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ↔ ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ ∧ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 203 | 202 | baib | ⊢ ( ( 1 + ( i · 𝐴 ) ) ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ↔ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 204 | 144 203 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ↔ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) |
| 205 | 199 204 | anbi12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ↔ ( ¬ ( 1 − ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ∧ ¬ ( 1 + ( i · 𝐴 ) ) ∈ ( -∞ (,] 0 ) ) ) ) |
| 206 | 185 192 205 | 3bitr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ↔ ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ) ) |
| 207 | 206 | pm5.32i | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ) ) |
| 208 | 1 2 | atans | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℂ ∧ ( 1 + ( 𝐴 ↑ 2 ) ) ∈ 𝐷 ) ) |
| 209 | 3anass | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ↔ ( 𝐴 ∈ ℂ ∧ ( ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ) ) | |
| 210 | 207 208 209 | 3bitr4i | ⊢ ( 𝐴 ∈ 𝑆 ↔ ( 𝐴 ∈ ℂ ∧ ( 1 − ( i · 𝐴 ) ) ∈ 𝐷 ∧ ( 1 + ( i · 𝐴 ) ) ∈ 𝐷 ) ) |