This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation of inverted fractions. (Contributed by NM, 28-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divcan6 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · ( 𝐵 / 𝐴 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recdiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · ( 1 / ( 𝐴 / 𝐵 ) ) ) = ( ( 𝐴 / 𝐵 ) · ( 𝐵 / 𝐴 ) ) ) |
| 3 | divcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 4 | 3 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 5 | 4 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℂ ) |
| 6 | divne0 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ≠ 0 ) | |
| 7 | recid | ⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℂ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) → ( ( 𝐴 / 𝐵 ) · ( 1 / ( 𝐴 / 𝐵 ) ) ) = 1 ) | |
| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · ( 1 / ( 𝐴 / 𝐵 ) ) ) = 1 ) |
| 9 | 2 8 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) · ( 𝐵 / 𝐴 ) ) = 1 ) |