This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cflim2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cflim2 | ⊢ ( Lim 𝐴 ↔ Lim ( cf ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflim2.1 | ⊢ 𝐴 ∈ V | |
| 2 | rabid | ⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ) | |
| 3 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) | |
| 4 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 5 | ordsson | ⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) | |
| 6 | sstr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ On ) → 𝑦 ⊆ On ) | |
| 7 | 6 | expcom | ⊢ ( 𝐴 ⊆ On → ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ On ) ) |
| 8 | 4 5 7 | 3syl | ⊢ ( Lim 𝐴 → ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ On ) ) |
| 9 | 8 | imp | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ On ) |
| 10 | 9 | 3adant3 | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → 𝑦 ⊆ On ) |
| 11 | ssel2 | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → 𝑠 ∈ On ) | |
| 12 | eloni | ⊢ ( 𝑠 ∈ On → Ord 𝑠 ) | |
| 13 | ordirr | ⊢ ( Ord 𝑠 → ¬ 𝑠 ∈ 𝑠 ) | |
| 14 | 11 12 13 | 3syl | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝑠 ∈ 𝑠 ) |
| 15 | ssel | ⊢ ( 𝑦 ⊆ 𝑠 → ( 𝑠 ∈ 𝑦 → 𝑠 ∈ 𝑠 ) ) | |
| 16 | 15 | com12 | ⊢ ( 𝑠 ∈ 𝑦 → ( 𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ( 𝑦 ⊆ 𝑠 → 𝑠 ∈ 𝑠 ) ) |
| 18 | 14 17 | mtod | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝑦 ⊆ 𝑠 ) |
| 19 | 10 18 | sylan | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝑦 ⊆ 𝑠 ) |
| 20 | simpl2 | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → 𝑦 ⊆ 𝐴 ) | |
| 21 | sstr | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝑠 ) → 𝑦 ⊆ 𝑠 ) | |
| 22 | 20 21 | sylan | ⊢ ( ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) ∧ 𝐴 ⊆ 𝑠 ) → 𝑦 ⊆ 𝑠 ) |
| 23 | 19 22 | mtand | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ 𝐴 ⊆ 𝑠 ) |
| 24 | simpl3 | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ∪ 𝑦 = 𝐴 ) | |
| 25 | 24 | sseq1d | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ( ∪ 𝑦 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠 ) ) |
| 26 | 23 25 | mtbird | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ ∪ 𝑦 ⊆ 𝑠 ) |
| 27 | unissb | ⊢ ( ∪ 𝑦 ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ) | |
| 28 | 26 27 | sylnib | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ 𝑠 ∈ 𝑦 ) → ¬ ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ) |
| 29 | 28 | nrexdv | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ¬ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ) |
| 30 | ssel | ⊢ ( 𝑦 ⊆ On → ( 𝑠 ∈ 𝑦 → 𝑠 ∈ On ) ) | |
| 31 | ssel | ⊢ ( 𝑦 ⊆ On → ( 𝑡 ∈ 𝑦 → 𝑡 ∈ On ) ) | |
| 32 | ontri1 | ⊢ ( ( 𝑡 ∈ On ∧ 𝑠 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡 ) ) | |
| 33 | 32 | ancoms | ⊢ ( ( 𝑠 ∈ On ∧ 𝑡 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑠 ∈ 𝑡 ) ) |
| 34 | vex | ⊢ 𝑡 ∈ V | |
| 35 | vex | ⊢ 𝑠 ∈ V | |
| 36 | 34 35 | brcnv | ⊢ ( 𝑡 ◡ E 𝑠 ↔ 𝑠 E 𝑡 ) |
| 37 | epel | ⊢ ( 𝑠 E 𝑡 ↔ 𝑠 ∈ 𝑡 ) | |
| 38 | 36 37 | bitri | ⊢ ( 𝑡 ◡ E 𝑠 ↔ 𝑠 ∈ 𝑡 ) |
| 39 | 38 | notbii | ⊢ ( ¬ 𝑡 ◡ E 𝑠 ↔ ¬ 𝑠 ∈ 𝑡 ) |
| 40 | 33 39 | bitr4di | ⊢ ( ( 𝑠 ∈ On ∧ 𝑡 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) |
| 41 | 40 | a1i | ⊢ ( 𝑦 ⊆ On → ( ( 𝑠 ∈ On ∧ 𝑡 ∈ On ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) ) |
| 42 | 30 31 41 | syl2and | ⊢ ( 𝑦 ⊆ On → ( ( 𝑠 ∈ 𝑦 ∧ 𝑡 ∈ 𝑦 ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) ) |
| 43 | 42 | impl | ⊢ ( ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) ∧ 𝑡 ∈ 𝑦 ) → ( 𝑡 ⊆ 𝑠 ↔ ¬ 𝑡 ◡ E 𝑠 ) ) |
| 44 | 43 | ralbidva | ⊢ ( ( 𝑦 ⊆ On ∧ 𝑠 ∈ 𝑦 ) → ( ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) ) |
| 45 | 44 | rexbidva | ⊢ ( 𝑦 ⊆ On → ( ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) ) |
| 46 | 10 45 | syl | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ( ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 𝑡 ⊆ 𝑠 ↔ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) ) |
| 47 | 29 46 | mtbid | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ¬ ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) |
| 48 | vex | ⊢ 𝑦 ∈ V | |
| 49 | 48 | a1i | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ∈ V ) |
| 50 | epweon | ⊢ E We On | |
| 51 | wess | ⊢ ( 𝑦 ⊆ On → ( E We On → E We 𝑦 ) ) | |
| 52 | 50 51 | mpi | ⊢ ( 𝑦 ⊆ On → E We 𝑦 ) |
| 53 | weso | ⊢ ( E We 𝑦 → E Or 𝑦 ) | |
| 54 | 52 53 | syl | ⊢ ( 𝑦 ⊆ On → E Or 𝑦 ) |
| 55 | cnvso | ⊢ ( E Or 𝑦 ↔ ◡ E Or 𝑦 ) | |
| 56 | 54 55 | sylib | ⊢ ( 𝑦 ⊆ On → ◡ E Or 𝑦 ) |
| 57 | onssnum | ⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ⊆ On ) → 𝑦 ∈ dom card ) | |
| 58 | 48 57 | mpan | ⊢ ( 𝑦 ⊆ On → 𝑦 ∈ dom card ) |
| 59 | cardid2 | ⊢ ( 𝑦 ∈ dom card → ( card ‘ 𝑦 ) ≈ 𝑦 ) | |
| 60 | ensym | ⊢ ( ( card ‘ 𝑦 ) ≈ 𝑦 → 𝑦 ≈ ( card ‘ 𝑦 ) ) | |
| 61 | 58 59 60 | 3syl | ⊢ ( 𝑦 ⊆ On → 𝑦 ≈ ( card ‘ 𝑦 ) ) |
| 62 | nnsdom | ⊢ ( ( card ‘ 𝑦 ) ∈ ω → ( card ‘ 𝑦 ) ≺ ω ) | |
| 63 | ensdomtr | ⊢ ( ( 𝑦 ≈ ( card ‘ 𝑦 ) ∧ ( card ‘ 𝑦 ) ≺ ω ) → 𝑦 ≺ ω ) | |
| 64 | 61 62 63 | syl2an | ⊢ ( ( 𝑦 ⊆ On ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ≺ ω ) |
| 65 | isfinite | ⊢ ( 𝑦 ∈ Fin ↔ 𝑦 ≺ ω ) | |
| 66 | 64 65 | sylibr | ⊢ ( ( 𝑦 ⊆ On ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ∈ Fin ) |
| 67 | wofi | ⊢ ( ( ◡ E Or 𝑦 ∧ 𝑦 ∈ Fin ) → ◡ E We 𝑦 ) | |
| 68 | 56 66 67 | syl2an2r | ⊢ ( ( 𝑦 ⊆ On ∧ ( card ‘ 𝑦 ) ∈ ω ) → ◡ E We 𝑦 ) |
| 69 | 10 68 | sylan | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → ◡ E We 𝑦 ) |
| 70 | wefr | ⊢ ( ◡ E We 𝑦 → ◡ E Fr 𝑦 ) | |
| 71 | 69 70 | syl | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → ◡ E Fr 𝑦 ) |
| 72 | ssidd | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ⊆ 𝑦 ) | |
| 73 | unieq | ⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∪ ∅ ) | |
| 74 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 75 | 73 74 | eqtrdi | ⊢ ( 𝑦 = ∅ → ∪ 𝑦 = ∅ ) |
| 76 | eqeq1 | ⊢ ( ∪ 𝑦 = 𝐴 → ( ∪ 𝑦 = ∅ ↔ 𝐴 = ∅ ) ) | |
| 77 | 75 76 | imbitrid | ⊢ ( ∪ 𝑦 = 𝐴 → ( 𝑦 = ∅ → 𝐴 = ∅ ) ) |
| 78 | nlim0 | ⊢ ¬ Lim ∅ | |
| 79 | limeq | ⊢ ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) ) | |
| 80 | 78 79 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ Lim 𝐴 ) |
| 81 | 77 80 | syl6 | ⊢ ( ∪ 𝑦 = 𝐴 → ( 𝑦 = ∅ → ¬ Lim 𝐴 ) ) |
| 82 | 81 | necon2ad | ⊢ ( ∪ 𝑦 = 𝐴 → ( Lim 𝐴 → 𝑦 ≠ ∅ ) ) |
| 83 | 82 | impcom | ⊢ ( ( Lim 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → 𝑦 ≠ ∅ ) |
| 84 | 83 | 3adant2 | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → 𝑦 ≠ ∅ ) |
| 85 | 84 | adantr | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → 𝑦 ≠ ∅ ) |
| 86 | fri | ⊢ ( ( ( 𝑦 ∈ V ∧ ◡ E Fr 𝑦 ) ∧ ( 𝑦 ⊆ 𝑦 ∧ 𝑦 ≠ ∅ ) ) → ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) | |
| 87 | 49 71 72 85 86 | syl22anc | ⊢ ( ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ∧ ( card ‘ 𝑦 ) ∈ ω ) → ∃ 𝑠 ∈ 𝑦 ∀ 𝑡 ∈ 𝑦 ¬ 𝑡 ◡ E 𝑠 ) |
| 88 | 47 87 | mtand | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ¬ ( card ‘ 𝑦 ) ∈ ω ) |
| 89 | cardon | ⊢ ( card ‘ 𝑦 ) ∈ On | |
| 90 | eloni | ⊢ ( ( card ‘ 𝑦 ) ∈ On → Ord ( card ‘ 𝑦 ) ) | |
| 91 | ordom | ⊢ Ord ω | |
| 92 | ordtri1 | ⊢ ( ( Ord ω ∧ Ord ( card ‘ 𝑦 ) ) → ( ω ⊆ ( card ‘ 𝑦 ) ↔ ¬ ( card ‘ 𝑦 ) ∈ ω ) ) | |
| 93 | 91 92 | mpan | ⊢ ( Ord ( card ‘ 𝑦 ) → ( ω ⊆ ( card ‘ 𝑦 ) ↔ ¬ ( card ‘ 𝑦 ) ∈ ω ) ) |
| 94 | 89 90 93 | mp2b | ⊢ ( ω ⊆ ( card ‘ 𝑦 ) ↔ ¬ ( card ‘ 𝑦 ) ∈ ω ) |
| 95 | 88 94 | sylibr | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ω ⊆ ( card ‘ 𝑦 ) ) |
| 96 | 3 95 | syl3an2b | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴 ) → ω ⊆ ( card ‘ 𝑦 ) ) |
| 97 | 96 | 3expb | ⊢ ( ( Lim 𝐴 ∧ ( 𝑦 ∈ 𝒫 𝐴 ∧ ∪ 𝑦 = 𝐴 ) ) → ω ⊆ ( card ‘ 𝑦 ) ) |
| 98 | 2 97 | sylan2b | ⊢ ( ( Lim 𝐴 ∧ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ) → ω ⊆ ( card ‘ 𝑦 ) ) |
| 99 | 98 | ralrimiva | ⊢ ( Lim 𝐴 → ∀ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ω ⊆ ( card ‘ 𝑦 ) ) |
| 100 | ssiin | ⊢ ( ω ⊆ ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ω ⊆ ( card ‘ 𝑦 ) ) | |
| 101 | 99 100 | sylibr | ⊢ ( Lim 𝐴 → ω ⊆ ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) ) |
| 102 | 1 | cflim3 | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) ) |
| 103 | 101 102 | sseqtrrd | ⊢ ( Lim 𝐴 → ω ⊆ ( cf ‘ 𝐴 ) ) |
| 104 | fvex | ⊢ ( card ‘ 𝑦 ) ∈ V | |
| 105 | 104 | dfiin2 | ⊢ ∩ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } ( card ‘ 𝑦 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } |
| 106 | 102 105 | eqtrdi | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ) |
| 107 | cardlim | ⊢ ( ω ⊆ ( card ‘ 𝑦 ) ↔ Lim ( card ‘ 𝑦 ) ) | |
| 108 | sseq2 | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( ω ⊆ 𝑥 ↔ ω ⊆ ( card ‘ 𝑦 ) ) ) | |
| 109 | limeq | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( Lim 𝑥 ↔ Lim ( card ‘ 𝑦 ) ) ) | |
| 110 | 108 109 | bibi12d | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ↔ ( ω ⊆ ( card ‘ 𝑦 ) ↔ Lim ( card ‘ 𝑦 ) ) ) ) |
| 111 | 107 110 | mpbiri | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ) |
| 112 | 111 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) → ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ) |
| 113 | 112 | ss2abi | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ⊆ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } |
| 114 | eleq1 | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑥 ∈ On ↔ ( card ‘ 𝑦 ) ∈ On ) ) | |
| 115 | 89 114 | mpbiri | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
| 116 | 115 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
| 117 | 116 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ⊆ On |
| 118 | fvex | ⊢ ( cf ‘ 𝐴 ) ∈ V | |
| 119 | 106 118 | eqeltrrdi | ⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ V ) |
| 120 | intex | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ≠ ∅ ↔ ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ V ) | |
| 121 | 119 120 | sylibr | ⊢ ( Lim 𝐴 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ≠ ∅ ) |
| 122 | onint | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ⊆ On ∧ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ≠ ∅ ) → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ) | |
| 123 | 117 121 122 | sylancr | ⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ) |
| 124 | 113 123 | sselid | ⊢ ( Lim 𝐴 → ∩ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ∪ 𝑦 = 𝐴 } 𝑥 = ( card ‘ 𝑦 ) } ∈ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } ) |
| 125 | 106 124 | eqeltrd | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } ) |
| 126 | sseq2 | ⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ω ⊆ 𝑥 ↔ ω ⊆ ( cf ‘ 𝐴 ) ) ) | |
| 127 | limeq | ⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( Lim 𝑥 ↔ Lim ( cf ‘ 𝐴 ) ) ) | |
| 128 | 126 127 | bibi12d | ⊢ ( 𝑥 = ( cf ‘ 𝐴 ) → ( ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) ↔ ( ω ⊆ ( cf ‘ 𝐴 ) ↔ Lim ( cf ‘ 𝐴 ) ) ) ) |
| 129 | 118 128 | elab | ⊢ ( ( cf ‘ 𝐴 ) ∈ { 𝑥 ∣ ( ω ⊆ 𝑥 ↔ Lim 𝑥 ) } ↔ ( ω ⊆ ( cf ‘ 𝐴 ) ↔ Lim ( cf ‘ 𝐴 ) ) ) |
| 130 | 125 129 | sylib | ⊢ ( Lim 𝐴 → ( ω ⊆ ( cf ‘ 𝐴 ) ↔ Lim ( cf ‘ 𝐴 ) ) ) |
| 131 | 103 130 | mpbid | ⊢ ( Lim 𝐴 → Lim ( cf ‘ 𝐴 ) ) |
| 132 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 133 | ordzsl | ⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) | |
| 134 | 132 133 | sylib | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
| 135 | df-3or | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ∨ Lim 𝐴 ) ) | |
| 136 | orcom | ⊢ ( ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ∨ Lim 𝐴 ) ↔ ( Lim 𝐴 ∨ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) | |
| 137 | df-or | ⊢ ( ( Lim 𝐴 ∨ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ↔ ( ¬ Lim 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) | |
| 138 | 135 136 137 | 3bitri | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( ¬ Lim 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 139 | 134 138 | sylib | ⊢ ( 𝐴 ∈ On → ( ¬ Lim 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) ) |
| 140 | fveq2 | ⊢ ( 𝐴 = ∅ → ( cf ‘ 𝐴 ) = ( cf ‘ ∅ ) ) | |
| 141 | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ | |
| 142 | 140 141 | eqtrdi | ⊢ ( 𝐴 = ∅ → ( cf ‘ 𝐴 ) = ∅ ) |
| 143 | limeq | ⊢ ( ( cf ‘ 𝐴 ) = ∅ → ( Lim ( cf ‘ 𝐴 ) ↔ Lim ∅ ) ) | |
| 144 | 142 143 | syl | ⊢ ( 𝐴 = ∅ → ( Lim ( cf ‘ 𝐴 ) ↔ Lim ∅ ) ) |
| 145 | 78 144 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ Lim ( cf ‘ 𝐴 ) ) |
| 146 | 1n0 | ⊢ 1o ≠ ∅ | |
| 147 | df1o2 | ⊢ 1o = { ∅ } | |
| 148 | 147 | unieqi | ⊢ ∪ 1o = ∪ { ∅ } |
| 149 | 0ex | ⊢ ∅ ∈ V | |
| 150 | 149 | unisn | ⊢ ∪ { ∅ } = ∅ |
| 151 | 148 150 | eqtri | ⊢ ∪ 1o = ∅ |
| 152 | 146 151 | neeqtrri | ⊢ 1o ≠ ∪ 1o |
| 153 | limuni | ⊢ ( Lim 1o → 1o = ∪ 1o ) | |
| 154 | 153 | necon3ai | ⊢ ( 1o ≠ ∪ 1o → ¬ Lim 1o ) |
| 155 | 152 154 | ax-mp | ⊢ ¬ Lim 1o |
| 156 | fveq2 | ⊢ ( 𝐴 = suc 𝑥 → ( cf ‘ 𝐴 ) = ( cf ‘ suc 𝑥 ) ) | |
| 157 | cfsuc | ⊢ ( 𝑥 ∈ On → ( cf ‘ suc 𝑥 ) = 1o ) | |
| 158 | 156 157 | sylan9eqr | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ( cf ‘ 𝐴 ) = 1o ) |
| 159 | limeq | ⊢ ( ( cf ‘ 𝐴 ) = 1o → ( Lim ( cf ‘ 𝐴 ) ↔ Lim 1o ) ) | |
| 160 | 158 159 | syl | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ( Lim ( cf ‘ 𝐴 ) ↔ Lim 1o ) ) |
| 161 | 155 160 | mtbiri | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 = suc 𝑥 ) → ¬ Lim ( cf ‘ 𝐴 ) ) |
| 162 | 161 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ¬ Lim ( cf ‘ 𝐴 ) ) |
| 163 | 145 162 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ¬ Lim ( cf ‘ 𝐴 ) ) |
| 164 | 139 163 | syl6 | ⊢ ( 𝐴 ∈ On → ( ¬ Lim 𝐴 → ¬ Lim ( cf ‘ 𝐴 ) ) ) |
| 165 | 164 | con4d | ⊢ ( 𝐴 ∈ On → ( Lim ( cf ‘ 𝐴 ) → Lim 𝐴 ) ) |
| 166 | cff | ⊢ cf : On ⟶ On | |
| 167 | 166 | fdmi | ⊢ dom cf = On |
| 168 | 167 | eleq2i | ⊢ ( 𝐴 ∈ dom cf ↔ 𝐴 ∈ On ) |
| 169 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom cf → ( cf ‘ 𝐴 ) = ∅ ) | |
| 170 | 168 169 | sylnbir | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∅ ) |
| 171 | 170 143 | syl | ⊢ ( ¬ 𝐴 ∈ On → ( Lim ( cf ‘ 𝐴 ) ↔ Lim ∅ ) ) |
| 172 | 78 171 | mtbiri | ⊢ ( ¬ 𝐴 ∈ On → ¬ Lim ( cf ‘ 𝐴 ) ) |
| 173 | 172 | pm2.21d | ⊢ ( ¬ 𝐴 ∈ On → ( Lim ( cf ‘ 𝐴 ) → Lim 𝐴 ) ) |
| 174 | 165 173 | pm2.61i | ⊢ ( Lim ( cf ‘ 𝐴 ) → Lim 𝐴 ) |
| 175 | 131 174 | impbii | ⊢ ( Lim 𝐴 ↔ Lim ( cf ‘ 𝐴 ) ) |