This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship involving membership, subset, and union. Exercise 5 of Enderton p. 26 and its converse. (Contributed by NM, 20-Sep-2003) Avoid ax-11 . (Revised by BTernaryTau, 28-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | ⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) | |
| 2 | 1 | imbi1i | ⊢ ( ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 3 | 19.23v | ⊢ ( ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) | |
| 4 | 2 3 | bitr4i | ⊢ ( ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 6 | elequ1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 7 | 6 | anbi1d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 8 | eleq1w | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑦 = 𝑧 → ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ 𝐵 ) ) ) |
| 10 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 11 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) ) |
| 14 | 9 13 | alcomw | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ) |
| 15 | 19.21v | ⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) | |
| 16 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ) | |
| 17 | bi2.04 | ⊢ ( ( 𝑦 ∈ 𝑥 → ( 𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) | |
| 18 | 16 17 | bitri | ⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 19 | 18 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 20 | df-ss | ⊢ ( 𝑥 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) | |
| 21 | 20 | imbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐵 ) ) ) |
| 22 | 15 19 21 | 3bitr4i | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 23 | 22 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 24 | 14 23 | bitri | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 25 | 5 24 | bitri | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) |
| 26 | df-ss | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ ∪ 𝐴 → 𝑦 ∈ 𝐵 ) ) | |
| 27 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐵 ) ) | |
| 28 | 25 26 27 | 3bitr4i | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) |