This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of TakeutiZaring p. 85. (Contributed by Mario Carneiro, 7-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardid2 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardval3 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) | |
| 2 | ssrab2 | ⊢ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ⊆ On | |
| 3 | fvex | ⊢ ( card ‘ 𝐴 ) ∈ V | |
| 4 | 1 3 | eqeltrrdi | ⊢ ( 𝐴 ∈ dom card → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ V ) |
| 5 | intex | ⊢ ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ≠ ∅ ↔ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ V ) | |
| 6 | 4 5 | sylibr | ⊢ ( 𝐴 ∈ dom card → { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ≠ ∅ ) |
| 7 | onint | ⊢ ( ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) | |
| 8 | 2 6 7 | sylancr | ⊢ ( 𝐴 ∈ dom card → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
| 9 | 1 8 | eqeltrd | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
| 10 | breq1 | ⊢ ( 𝑦 = ( card ‘ 𝐴 ) → ( 𝑦 ≈ 𝐴 ↔ ( card ‘ 𝐴 ) ≈ 𝐴 ) ) | |
| 11 | 10 | elrab | ⊢ ( ( card ‘ 𝐴 ) ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ( ( card ‘ 𝐴 ) ∈ On ∧ ( card ‘ 𝐴 ) ≈ 𝐴 ) ) |
| 12 | 11 | simprbi | ⊢ ( ( card ‘ 𝐴 ) ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 13 | 9 12 | syl | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) |