This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation well-orders the class of ordinal numbers. This proof does not require the axiom of regularity. Proposition 4.8(g) of Mendelson p. 244. For a shorter proof requiring ax-un , see epweonALT . (Contributed by NM, 1-Nov-2003) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epweon | ⊢ E We On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfr | ⊢ E Fr On | |
| 2 | df-po | ⊢ ( E Po On ↔ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) | |
| 3 | eloni | ⊢ ( 𝑥 ∈ On → Ord 𝑥 ) | |
| 4 | ordirr | ⊢ ( Ord 𝑥 → ¬ 𝑥 ∈ 𝑥 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑥 ∈ On → ¬ 𝑥 ∈ 𝑥 ) |
| 6 | epel | ⊢ ( 𝑥 E 𝑥 ↔ 𝑥 ∈ 𝑥 ) | |
| 7 | 5 6 | sylnibr | ⊢ ( 𝑥 ∈ On → ¬ 𝑥 E 𝑥 ) |
| 8 | ontr1 | ⊢ ( 𝑧 ∈ On → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) → 𝑥 ∈ 𝑧 ) ) | |
| 9 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 10 | epel | ⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) | |
| 11 | 9 10 | anbi12i | ⊢ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑧 ) ) |
| 12 | epel | ⊢ ( 𝑥 E 𝑧 ↔ 𝑥 ∈ 𝑧 ) | |
| 13 | 8 11 12 | 3imtr4g | ⊢ ( 𝑧 ∈ On → ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) |
| 14 | 7 13 | anim12i | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝑥 ∈ On → ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 16 | 15 | ralrimivw | ⊢ ( 𝑥 ∈ On → ∀ 𝑦 ∈ On ∀ 𝑧 ∈ On ( ¬ 𝑥 E 𝑥 ∧ ( ( 𝑥 E 𝑦 ∧ 𝑦 E 𝑧 ) → 𝑥 E 𝑧 ) ) ) |
| 17 | 2 16 | mprgbir | ⊢ E Po On |
| 18 | eloni | ⊢ ( 𝑦 ∈ On → Ord 𝑦 ) | |
| 19 | ordtri3or | ⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) | |
| 20 | biid | ⊢ ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑦 ) | |
| 21 | epel | ⊢ ( 𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 22 | 9 20 21 | 3orbi123i | ⊢ ( ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ↔ ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
| 23 | 19 22 | sylibr | ⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
| 24 | 3 18 23 | syl2an | ⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) |
| 25 | 24 | rgen2 | ⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) |
| 26 | df-so | ⊢ ( E Or On ↔ ( E Po On ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( 𝑥 E 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 E 𝑥 ) ) ) | |
| 27 | 17 25 26 | mpbir2an | ⊢ E Or On |
| 28 | df-we | ⊢ ( E We On ↔ ( E Fr On ∧ E Or On ) ) | |
| 29 | 1 27 28 | mpbir2an | ⊢ E We On |