This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvso | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvpo | ⊢ ( 𝑅 Po 𝐴 ↔ ◡ 𝑅 Po 𝐴 ) | |
| 2 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 3 4 | brcnv | ⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 6 | equcom | ⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) | |
| 7 | 4 3 | brcnv | ⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 8 | 5 6 7 | 3orbi123i | ⊢ ( ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
| 10 | 2 9 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) |
| 11 | 1 10 | anbi12i | ⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( ◡ 𝑅 Po 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) ) |
| 12 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 13 | df-so | ⊢ ( ◡ 𝑅 Or 𝐴 ↔ ( ◡ 𝑅 Po 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |