This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cofinality function at 0. Exercise 2 of TakeutiZaring p. 102. (Contributed by NM, 16-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfub | ⊢ ( cf ‘ ∅ ) ⊆ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } | |
| 2 | 0ss | ⊢ ∅ ⊆ ∪ 𝑦 | |
| 3 | 2 | biantru | ⊢ ( 𝑦 ⊆ ∅ ↔ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) |
| 4 | ss0b | ⊢ ( 𝑦 ⊆ ∅ ↔ 𝑦 = ∅ ) | |
| 5 | 3 4 | bitr3i | ⊢ ( ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ↔ 𝑦 = ∅ ) |
| 6 | 5 | anbi1ci | ⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) ↔ ( 𝑦 = ∅ ∧ 𝑥 = ( card ‘ 𝑦 ) ) ) |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑦 = ∅ ∧ 𝑥 = ( card ‘ 𝑦 ) ) ) |
| 8 | 0ex | ⊢ ∅ ∈ V | |
| 9 | fveq2 | ⊢ ( 𝑦 = ∅ → ( card ‘ 𝑦 ) = ( card ‘ ∅ ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑦 = ∅ → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ ∅ ) ) ) |
| 11 | 8 10 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = ∅ ∧ 𝑥 = ( card ‘ 𝑦 ) ) ↔ 𝑥 = ( card ‘ ∅ ) ) |
| 12 | card0 | ⊢ ( card ‘ ∅ ) = ∅ | |
| 13 | 12 | eqeq2i | ⊢ ( 𝑥 = ( card ‘ ∅ ) ↔ 𝑥 = ∅ ) |
| 14 | 7 11 13 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) ↔ 𝑥 = ∅ ) |
| 15 | 14 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = { 𝑥 ∣ 𝑥 = ∅ } |
| 16 | df-sn | ⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } | |
| 17 | 15 16 | eqtr4i | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = { ∅ } |
| 18 | 17 | inteqi | ⊢ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = ∩ { ∅ } |
| 19 | 8 | intsn | ⊢ ∩ { ∅ } = ∅ |
| 20 | 18 19 | eqtri | ⊢ ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ ∅ ∧ ∅ ⊆ ∪ 𝑦 ) ) } = ∅ |
| 21 | 1 20 | sseqtri | ⊢ ( cf ‘ ∅ ) ⊆ ∅ |
| 22 | ss0b | ⊢ ( ( cf ‘ ∅ ) ⊆ ∅ ↔ ( cf ‘ ∅ ) = ∅ ) | |
| 23 | 21 22 | mpbi | ⊢ ( cf ‘ ∅ ) = ∅ |