This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cofinality function is a limit ordinal iff its argument is. (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cflim2.1 | |- A e. _V |
|
| Assertion | cflim2 | |- ( Lim A <-> Lim ( cf ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflim2.1 | |- A e. _V |
|
| 2 | rabid | |- ( y e. { y e. ~P A | U. y = A } <-> ( y e. ~P A /\ U. y = A ) ) |
|
| 3 | velpw | |- ( y e. ~P A <-> y C_ A ) |
|
| 4 | limord | |- ( Lim A -> Ord A ) |
|
| 5 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 6 | sstr | |- ( ( y C_ A /\ A C_ On ) -> y C_ On ) |
|
| 7 | 6 | expcom | |- ( A C_ On -> ( y C_ A -> y C_ On ) ) |
| 8 | 4 5 7 | 3syl | |- ( Lim A -> ( y C_ A -> y C_ On ) ) |
| 9 | 8 | imp | |- ( ( Lim A /\ y C_ A ) -> y C_ On ) |
| 10 | 9 | 3adant3 | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> y C_ On ) |
| 11 | ssel2 | |- ( ( y C_ On /\ s e. y ) -> s e. On ) |
|
| 12 | eloni | |- ( s e. On -> Ord s ) |
|
| 13 | ordirr | |- ( Ord s -> -. s e. s ) |
|
| 14 | 11 12 13 | 3syl | |- ( ( y C_ On /\ s e. y ) -> -. s e. s ) |
| 15 | ssel | |- ( y C_ s -> ( s e. y -> s e. s ) ) |
|
| 16 | 15 | com12 | |- ( s e. y -> ( y C_ s -> s e. s ) ) |
| 17 | 16 | adantl | |- ( ( y C_ On /\ s e. y ) -> ( y C_ s -> s e. s ) ) |
| 18 | 14 17 | mtod | |- ( ( y C_ On /\ s e. y ) -> -. y C_ s ) |
| 19 | 10 18 | sylan | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> -. y C_ s ) |
| 20 | simpl2 | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> y C_ A ) |
|
| 21 | sstr | |- ( ( y C_ A /\ A C_ s ) -> y C_ s ) |
|
| 22 | 20 21 | sylan | |- ( ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) /\ A C_ s ) -> y C_ s ) |
| 23 | 19 22 | mtand | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> -. A C_ s ) |
| 24 | simpl3 | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> U. y = A ) |
|
| 25 | 24 | sseq1d | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> ( U. y C_ s <-> A C_ s ) ) |
| 26 | 23 25 | mtbird | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> -. U. y C_ s ) |
| 27 | unissb | |- ( U. y C_ s <-> A. t e. y t C_ s ) |
|
| 28 | 26 27 | sylnib | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ s e. y ) -> -. A. t e. y t C_ s ) |
| 29 | 28 | nrexdv | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> -. E. s e. y A. t e. y t C_ s ) |
| 30 | ssel | |- ( y C_ On -> ( s e. y -> s e. On ) ) |
|
| 31 | ssel | |- ( y C_ On -> ( t e. y -> t e. On ) ) |
|
| 32 | ontri1 | |- ( ( t e. On /\ s e. On ) -> ( t C_ s <-> -. s e. t ) ) |
|
| 33 | 32 | ancoms | |- ( ( s e. On /\ t e. On ) -> ( t C_ s <-> -. s e. t ) ) |
| 34 | vex | |- t e. _V |
|
| 35 | vex | |- s e. _V |
|
| 36 | 34 35 | brcnv | |- ( t `' _E s <-> s _E t ) |
| 37 | epel | |- ( s _E t <-> s e. t ) |
|
| 38 | 36 37 | bitri | |- ( t `' _E s <-> s e. t ) |
| 39 | 38 | notbii | |- ( -. t `' _E s <-> -. s e. t ) |
| 40 | 33 39 | bitr4di | |- ( ( s e. On /\ t e. On ) -> ( t C_ s <-> -. t `' _E s ) ) |
| 41 | 40 | a1i | |- ( y C_ On -> ( ( s e. On /\ t e. On ) -> ( t C_ s <-> -. t `' _E s ) ) ) |
| 42 | 30 31 41 | syl2and | |- ( y C_ On -> ( ( s e. y /\ t e. y ) -> ( t C_ s <-> -. t `' _E s ) ) ) |
| 43 | 42 | impl | |- ( ( ( y C_ On /\ s e. y ) /\ t e. y ) -> ( t C_ s <-> -. t `' _E s ) ) |
| 44 | 43 | ralbidva | |- ( ( y C_ On /\ s e. y ) -> ( A. t e. y t C_ s <-> A. t e. y -. t `' _E s ) ) |
| 45 | 44 | rexbidva | |- ( y C_ On -> ( E. s e. y A. t e. y t C_ s <-> E. s e. y A. t e. y -. t `' _E s ) ) |
| 46 | 10 45 | syl | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> ( E. s e. y A. t e. y t C_ s <-> E. s e. y A. t e. y -. t `' _E s ) ) |
| 47 | 29 46 | mtbid | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> -. E. s e. y A. t e. y -. t `' _E s ) |
| 48 | vex | |- y e. _V |
|
| 49 | 48 | a1i | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ ( card ` y ) e. _om ) -> y e. _V ) |
| 50 | epweon | |- _E We On |
|
| 51 | wess | |- ( y C_ On -> ( _E We On -> _E We y ) ) |
|
| 52 | 50 51 | mpi | |- ( y C_ On -> _E We y ) |
| 53 | weso | |- ( _E We y -> _E Or y ) |
|
| 54 | 52 53 | syl | |- ( y C_ On -> _E Or y ) |
| 55 | cnvso | |- ( _E Or y <-> `' _E Or y ) |
|
| 56 | 54 55 | sylib | |- ( y C_ On -> `' _E Or y ) |
| 57 | onssnum | |- ( ( y e. _V /\ y C_ On ) -> y e. dom card ) |
|
| 58 | 48 57 | mpan | |- ( y C_ On -> y e. dom card ) |
| 59 | cardid2 | |- ( y e. dom card -> ( card ` y ) ~~ y ) |
|
| 60 | ensym | |- ( ( card ` y ) ~~ y -> y ~~ ( card ` y ) ) |
|
| 61 | 58 59 60 | 3syl | |- ( y C_ On -> y ~~ ( card ` y ) ) |
| 62 | nnsdom | |- ( ( card ` y ) e. _om -> ( card ` y ) ~< _om ) |
|
| 63 | ensdomtr | |- ( ( y ~~ ( card ` y ) /\ ( card ` y ) ~< _om ) -> y ~< _om ) |
|
| 64 | 61 62 63 | syl2an | |- ( ( y C_ On /\ ( card ` y ) e. _om ) -> y ~< _om ) |
| 65 | isfinite | |- ( y e. Fin <-> y ~< _om ) |
|
| 66 | 64 65 | sylibr | |- ( ( y C_ On /\ ( card ` y ) e. _om ) -> y e. Fin ) |
| 67 | wofi | |- ( ( `' _E Or y /\ y e. Fin ) -> `' _E We y ) |
|
| 68 | 56 66 67 | syl2an2r | |- ( ( y C_ On /\ ( card ` y ) e. _om ) -> `' _E We y ) |
| 69 | 10 68 | sylan | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ ( card ` y ) e. _om ) -> `' _E We y ) |
| 70 | wefr | |- ( `' _E We y -> `' _E Fr y ) |
|
| 71 | 69 70 | syl | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ ( card ` y ) e. _om ) -> `' _E Fr y ) |
| 72 | ssidd | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ ( card ` y ) e. _om ) -> y C_ y ) |
|
| 73 | unieq | |- ( y = (/) -> U. y = U. (/) ) |
|
| 74 | uni0 | |- U. (/) = (/) |
|
| 75 | 73 74 | eqtrdi | |- ( y = (/) -> U. y = (/) ) |
| 76 | eqeq1 | |- ( U. y = A -> ( U. y = (/) <-> A = (/) ) ) |
|
| 77 | 75 76 | imbitrid | |- ( U. y = A -> ( y = (/) -> A = (/) ) ) |
| 78 | nlim0 | |- -. Lim (/) |
|
| 79 | limeq | |- ( A = (/) -> ( Lim A <-> Lim (/) ) ) |
|
| 80 | 78 79 | mtbiri | |- ( A = (/) -> -. Lim A ) |
| 81 | 77 80 | syl6 | |- ( U. y = A -> ( y = (/) -> -. Lim A ) ) |
| 82 | 81 | necon2ad | |- ( U. y = A -> ( Lim A -> y =/= (/) ) ) |
| 83 | 82 | impcom | |- ( ( Lim A /\ U. y = A ) -> y =/= (/) ) |
| 84 | 83 | 3adant2 | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> y =/= (/) ) |
| 85 | 84 | adantr | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ ( card ` y ) e. _om ) -> y =/= (/) ) |
| 86 | fri | |- ( ( ( y e. _V /\ `' _E Fr y ) /\ ( y C_ y /\ y =/= (/) ) ) -> E. s e. y A. t e. y -. t `' _E s ) |
|
| 87 | 49 71 72 85 86 | syl22anc | |- ( ( ( Lim A /\ y C_ A /\ U. y = A ) /\ ( card ` y ) e. _om ) -> E. s e. y A. t e. y -. t `' _E s ) |
| 88 | 47 87 | mtand | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> -. ( card ` y ) e. _om ) |
| 89 | cardon | |- ( card ` y ) e. On |
|
| 90 | eloni | |- ( ( card ` y ) e. On -> Ord ( card ` y ) ) |
|
| 91 | ordom | |- Ord _om |
|
| 92 | ordtri1 | |- ( ( Ord _om /\ Ord ( card ` y ) ) -> ( _om C_ ( card ` y ) <-> -. ( card ` y ) e. _om ) ) |
|
| 93 | 91 92 | mpan | |- ( Ord ( card ` y ) -> ( _om C_ ( card ` y ) <-> -. ( card ` y ) e. _om ) ) |
| 94 | 89 90 93 | mp2b | |- ( _om C_ ( card ` y ) <-> -. ( card ` y ) e. _om ) |
| 95 | 88 94 | sylibr | |- ( ( Lim A /\ y C_ A /\ U. y = A ) -> _om C_ ( card ` y ) ) |
| 96 | 3 95 | syl3an2b | |- ( ( Lim A /\ y e. ~P A /\ U. y = A ) -> _om C_ ( card ` y ) ) |
| 97 | 96 | 3expb | |- ( ( Lim A /\ ( y e. ~P A /\ U. y = A ) ) -> _om C_ ( card ` y ) ) |
| 98 | 2 97 | sylan2b | |- ( ( Lim A /\ y e. { y e. ~P A | U. y = A } ) -> _om C_ ( card ` y ) ) |
| 99 | 98 | ralrimiva | |- ( Lim A -> A. y e. { y e. ~P A | U. y = A } _om C_ ( card ` y ) ) |
| 100 | ssiin | |- ( _om C_ |^|_ y e. { y e. ~P A | U. y = A } ( card ` y ) <-> A. y e. { y e. ~P A | U. y = A } _om C_ ( card ` y ) ) |
|
| 101 | 99 100 | sylibr | |- ( Lim A -> _om C_ |^|_ y e. { y e. ~P A | U. y = A } ( card ` y ) ) |
| 102 | 1 | cflim3 | |- ( Lim A -> ( cf ` A ) = |^|_ y e. { y e. ~P A | U. y = A } ( card ` y ) ) |
| 103 | 101 102 | sseqtrrd | |- ( Lim A -> _om C_ ( cf ` A ) ) |
| 104 | fvex | |- ( card ` y ) e. _V |
|
| 105 | 104 | dfiin2 | |- |^|_ y e. { y e. ~P A | U. y = A } ( card ` y ) = |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } |
| 106 | 102 105 | eqtrdi | |- ( Lim A -> ( cf ` A ) = |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } ) |
| 107 | cardlim | |- ( _om C_ ( card ` y ) <-> Lim ( card ` y ) ) |
|
| 108 | sseq2 | |- ( x = ( card ` y ) -> ( _om C_ x <-> _om C_ ( card ` y ) ) ) |
|
| 109 | limeq | |- ( x = ( card ` y ) -> ( Lim x <-> Lim ( card ` y ) ) ) |
|
| 110 | 108 109 | bibi12d | |- ( x = ( card ` y ) -> ( ( _om C_ x <-> Lim x ) <-> ( _om C_ ( card ` y ) <-> Lim ( card ` y ) ) ) ) |
| 111 | 107 110 | mpbiri | |- ( x = ( card ` y ) -> ( _om C_ x <-> Lim x ) ) |
| 112 | 111 | rexlimivw | |- ( E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) -> ( _om C_ x <-> Lim x ) ) |
| 113 | 112 | ss2abi | |- { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } C_ { x | ( _om C_ x <-> Lim x ) } |
| 114 | eleq1 | |- ( x = ( card ` y ) -> ( x e. On <-> ( card ` y ) e. On ) ) |
|
| 115 | 89 114 | mpbiri | |- ( x = ( card ` y ) -> x e. On ) |
| 116 | 115 | rexlimivw | |- ( E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) -> x e. On ) |
| 117 | 116 | abssi | |- { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } C_ On |
| 118 | fvex | |- ( cf ` A ) e. _V |
|
| 119 | 106 118 | eqeltrrdi | |- ( Lim A -> |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } e. _V ) |
| 120 | intex | |- ( { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } =/= (/) <-> |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } e. _V ) |
|
| 121 | 119 120 | sylibr | |- ( Lim A -> { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } =/= (/) ) |
| 122 | onint | |- ( ( { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } C_ On /\ { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } =/= (/) ) -> |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } e. { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } ) |
|
| 123 | 117 121 122 | sylancr | |- ( Lim A -> |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } e. { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } ) |
| 124 | 113 123 | sselid | |- ( Lim A -> |^| { x | E. y e. { y e. ~P A | U. y = A } x = ( card ` y ) } e. { x | ( _om C_ x <-> Lim x ) } ) |
| 125 | 106 124 | eqeltrd | |- ( Lim A -> ( cf ` A ) e. { x | ( _om C_ x <-> Lim x ) } ) |
| 126 | sseq2 | |- ( x = ( cf ` A ) -> ( _om C_ x <-> _om C_ ( cf ` A ) ) ) |
|
| 127 | limeq | |- ( x = ( cf ` A ) -> ( Lim x <-> Lim ( cf ` A ) ) ) |
|
| 128 | 126 127 | bibi12d | |- ( x = ( cf ` A ) -> ( ( _om C_ x <-> Lim x ) <-> ( _om C_ ( cf ` A ) <-> Lim ( cf ` A ) ) ) ) |
| 129 | 118 128 | elab | |- ( ( cf ` A ) e. { x | ( _om C_ x <-> Lim x ) } <-> ( _om C_ ( cf ` A ) <-> Lim ( cf ` A ) ) ) |
| 130 | 125 129 | sylib | |- ( Lim A -> ( _om C_ ( cf ` A ) <-> Lim ( cf ` A ) ) ) |
| 131 | 103 130 | mpbid | |- ( Lim A -> Lim ( cf ` A ) ) |
| 132 | eloni | |- ( A e. On -> Ord A ) |
|
| 133 | ordzsl | |- ( Ord A <-> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
|
| 134 | 132 133 | sylib | |- ( A e. On -> ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) ) |
| 135 | df-3or | |- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) <-> ( ( A = (/) \/ E. x e. On A = suc x ) \/ Lim A ) ) |
|
| 136 | orcom | |- ( ( ( A = (/) \/ E. x e. On A = suc x ) \/ Lim A ) <-> ( Lim A \/ ( A = (/) \/ E. x e. On A = suc x ) ) ) |
|
| 137 | df-or | |- ( ( Lim A \/ ( A = (/) \/ E. x e. On A = suc x ) ) <-> ( -. Lim A -> ( A = (/) \/ E. x e. On A = suc x ) ) ) |
|
| 138 | 135 136 137 | 3bitri | |- ( ( A = (/) \/ E. x e. On A = suc x \/ Lim A ) <-> ( -. Lim A -> ( A = (/) \/ E. x e. On A = suc x ) ) ) |
| 139 | 134 138 | sylib | |- ( A e. On -> ( -. Lim A -> ( A = (/) \/ E. x e. On A = suc x ) ) ) |
| 140 | fveq2 | |- ( A = (/) -> ( cf ` A ) = ( cf ` (/) ) ) |
|
| 141 | cf0 | |- ( cf ` (/) ) = (/) |
|
| 142 | 140 141 | eqtrdi | |- ( A = (/) -> ( cf ` A ) = (/) ) |
| 143 | limeq | |- ( ( cf ` A ) = (/) -> ( Lim ( cf ` A ) <-> Lim (/) ) ) |
|
| 144 | 142 143 | syl | |- ( A = (/) -> ( Lim ( cf ` A ) <-> Lim (/) ) ) |
| 145 | 78 144 | mtbiri | |- ( A = (/) -> -. Lim ( cf ` A ) ) |
| 146 | 1n0 | |- 1o =/= (/) |
|
| 147 | df1o2 | |- 1o = { (/) } |
|
| 148 | 147 | unieqi | |- U. 1o = U. { (/) } |
| 149 | 0ex | |- (/) e. _V |
|
| 150 | 149 | unisn | |- U. { (/) } = (/) |
| 151 | 148 150 | eqtri | |- U. 1o = (/) |
| 152 | 146 151 | neeqtrri | |- 1o =/= U. 1o |
| 153 | limuni | |- ( Lim 1o -> 1o = U. 1o ) |
|
| 154 | 153 | necon3ai | |- ( 1o =/= U. 1o -> -. Lim 1o ) |
| 155 | 152 154 | ax-mp | |- -. Lim 1o |
| 156 | fveq2 | |- ( A = suc x -> ( cf ` A ) = ( cf ` suc x ) ) |
|
| 157 | cfsuc | |- ( x e. On -> ( cf ` suc x ) = 1o ) |
|
| 158 | 156 157 | sylan9eqr | |- ( ( x e. On /\ A = suc x ) -> ( cf ` A ) = 1o ) |
| 159 | limeq | |- ( ( cf ` A ) = 1o -> ( Lim ( cf ` A ) <-> Lim 1o ) ) |
|
| 160 | 158 159 | syl | |- ( ( x e. On /\ A = suc x ) -> ( Lim ( cf ` A ) <-> Lim 1o ) ) |
| 161 | 155 160 | mtbiri | |- ( ( x e. On /\ A = suc x ) -> -. Lim ( cf ` A ) ) |
| 162 | 161 | rexlimiva | |- ( E. x e. On A = suc x -> -. Lim ( cf ` A ) ) |
| 163 | 145 162 | jaoi | |- ( ( A = (/) \/ E. x e. On A = suc x ) -> -. Lim ( cf ` A ) ) |
| 164 | 139 163 | syl6 | |- ( A e. On -> ( -. Lim A -> -. Lim ( cf ` A ) ) ) |
| 165 | 164 | con4d | |- ( A e. On -> ( Lim ( cf ` A ) -> Lim A ) ) |
| 166 | cff | |- cf : On --> On |
|
| 167 | 166 | fdmi | |- dom cf = On |
| 168 | 167 | eleq2i | |- ( A e. dom cf <-> A e. On ) |
| 169 | ndmfv | |- ( -. A e. dom cf -> ( cf ` A ) = (/) ) |
|
| 170 | 168 169 | sylnbir | |- ( -. A e. On -> ( cf ` A ) = (/) ) |
| 171 | 170 143 | syl | |- ( -. A e. On -> ( Lim ( cf ` A ) <-> Lim (/) ) ) |
| 172 | 78 171 | mtbiri | |- ( -. A e. On -> -. Lim ( cf ` A ) ) |
| 173 | 172 | pm2.21d | |- ( -. A e. On -> ( Lim ( cf ` A ) -> Lim A ) ) |
| 174 | 165 173 | pm2.61i | |- ( Lim ( cf ` A ) -> Lim A ) |
| 175 | 131 174 | impbii | |- ( Lim A <-> Lim ( cf ` A ) ) |