This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Another expression for the cofinality function. (Contributed by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cflim3.1 | ⊢ 𝐴 ∈ V | |
| Assertion | cflim3 | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cflim3.1 | ⊢ 𝐴 ∈ V | |
| 2 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 3 | 1 | elon | ⊢ ( 𝐴 ∈ On ↔ Ord 𝐴 ) |
| 4 | 2 3 | sylibr | ⊢ ( Lim 𝐴 → 𝐴 ∈ On ) |
| 5 | cfval | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) | |
| 6 | 4 5 | syl | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
| 7 | fvex | ⊢ ( card ‘ 𝑥 ) ∈ V | |
| 8 | 7 | dfiin2 | ⊢ ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) = ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } |
| 9 | df-rex | ⊢ ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ) | |
| 10 | ancom | ⊢ ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ) ) | |
| 11 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) | |
| 12 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 13 | 12 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ) |
| 14 | coflim | ⊢ ( ( Lim 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( ∪ 𝑥 = 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) | |
| 15 | 14 | pm5.32da | ⊢ ( Lim 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
| 16 | 13 15 | bitrid | ⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ 𝒫 𝐴 ∧ ∪ 𝑥 = 𝐴 ) ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
| 17 | 11 16 | bitrid | ⊢ ( Lim 𝐴 → ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ↔ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) |
| 18 | 17 | anbi2d | ⊢ ( Lim 𝐴 → ( ( 𝑦 = ( card ‘ 𝑥 ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
| 19 | 10 18 | bitrid | ⊢ ( Lim 𝐴 → ( ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
| 20 | 19 | exbidv | ⊢ ( Lim 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ∧ 𝑦 = ( card ‘ 𝑥 ) ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
| 21 | 9 20 | bitrid | ⊢ ( Lim 𝐴 → ( ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) ↔ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) ) ) |
| 22 | 21 | abbidv | ⊢ ( Lim 𝐴 → { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
| 23 | 22 | inteqd | ⊢ ( Lim 𝐴 → ∩ { 𝑦 ∣ ∃ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } 𝑦 = ( card ‘ 𝑥 ) } = ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } ) |
| 24 | 8 23 | eqtr2id | ⊢ ( Lim 𝐴 → ∩ { 𝑦 ∣ ∃ 𝑥 ( 𝑦 = ( card ‘ 𝑥 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑥 𝑧 ⊆ 𝑤 ) ) } = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |
| 25 | 6 24 | eqtrd | ⊢ ( Lim 𝐴 → ( cf ‘ 𝐴 ) = ∩ 𝑥 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ∪ 𝑥 = 𝐴 } ( card ‘ 𝑥 ) ) |