This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cofinality is a function on the class of ordinal numbers to the class of cardinal numbers. (Contributed by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cff | ⊢ cf : On ⟶ On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cf | ⊢ cf = ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ) | |
| 2 | cardon | ⊢ ( card ‘ 𝑧 ) ∈ On | |
| 3 | eleq1 | ⊢ ( 𝑦 = ( card ‘ 𝑧 ) → ( 𝑦 ∈ On ↔ ( card ‘ 𝑧 ) ∈ On ) ) | |
| 4 | 2 3 | mpbiri | ⊢ ( 𝑦 = ( card ‘ 𝑧 ) → 𝑦 ∈ On ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) → 𝑦 ∈ On ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) → 𝑦 ∈ On ) |
| 7 | 6 | abssi | ⊢ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ⊆ On |
| 8 | cflem | ⊢ ( 𝑥 ∈ On → ∃ 𝑦 ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) ) | |
| 9 | abn0 | ⊢ ( { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ≠ ∅ ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝑥 ∈ On → { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ≠ ∅ ) |
| 11 | oninton | ⊢ ( ( { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ⊆ On ∧ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ≠ ∅ ) → ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ∈ On ) | |
| 12 | 7 10 11 | sylancr | ⊢ ( 𝑥 ∈ On → ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑤 ∈ 𝑥 ∃ 𝑣 ∈ 𝑧 𝑤 ⊆ 𝑣 ) ) } ∈ On ) |
| 13 | 1 12 | fmpti | ⊢ cf : On ⟶ On |