This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of TakeutiZaring p. 102. (Contributed by NM, 23-Apr-2004) (Revised by Mario Carneiro, 12-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfsuc | ⊢ ( 𝐴 ∈ On → ( cf ‘ suc 𝐴 ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucb | ⊢ ( 𝐴 ∈ On ↔ suc 𝐴 ∈ On ) | |
| 2 | cfval | ⊢ ( suc 𝐴 ∈ On → ( cf ‘ suc 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) | |
| 3 | 1 2 | sylbi | ⊢ ( 𝐴 ∈ On → ( cf ‘ suc 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 4 | cardsn | ⊢ ( 𝐴 ∈ On → ( card ‘ { 𝐴 } ) = 1o ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝐴 ∈ On → 1o = ( card ‘ { 𝐴 } ) ) |
| 6 | snidg | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ { 𝐴 } ) | |
| 7 | elsuci | ⊢ ( 𝑧 ∈ suc 𝐴 → ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐴 ) ) | |
| 8 | onelss | ⊢ ( 𝐴 ∈ On → ( 𝑧 ∈ 𝐴 → 𝑧 ⊆ 𝐴 ) ) | |
| 9 | eqimss | ⊢ ( 𝑧 = 𝐴 → 𝑧 ⊆ 𝐴 ) | |
| 10 | 9 | a1i | ⊢ ( 𝐴 ∈ On → ( 𝑧 = 𝐴 → 𝑧 ⊆ 𝐴 ) ) |
| 11 | 8 10 | jaod | ⊢ ( 𝐴 ∈ On → ( ( 𝑧 ∈ 𝐴 ∨ 𝑧 = 𝐴 ) → 𝑧 ⊆ 𝐴 ) ) |
| 12 | 7 11 | syl5 | ⊢ ( 𝐴 ∈ On → ( 𝑧 ∈ suc 𝐴 → 𝑧 ⊆ 𝐴 ) ) |
| 13 | sseq2 | ⊢ ( 𝑤 = 𝐴 → ( 𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝐴 ) ) | |
| 14 | 13 | rspcev | ⊢ ( ( 𝐴 ∈ { 𝐴 } ∧ 𝑧 ⊆ 𝐴 ) → ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) |
| 15 | 6 12 14 | syl6an | ⊢ ( 𝐴 ∈ On → ( 𝑧 ∈ suc 𝐴 → ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) |
| 16 | 15 | ralrimiv | ⊢ ( 𝐴 ∈ On → ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) |
| 17 | ssun2 | ⊢ { 𝐴 } ⊆ ( 𝐴 ∪ { 𝐴 } ) | |
| 18 | df-suc | ⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) | |
| 19 | 17 18 | sseqtrri | ⊢ { 𝐴 } ⊆ suc 𝐴 |
| 20 | 16 19 | jctil | ⊢ ( 𝐴 ∈ On → ( { 𝐴 } ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) |
| 21 | snex | ⊢ { 𝐴 } ∈ V | |
| 22 | fveq2 | ⊢ ( 𝑦 = { 𝐴 } → ( card ‘ 𝑦 ) = ( card ‘ { 𝐴 } ) ) | |
| 23 | 22 | eqeq2d | ⊢ ( 𝑦 = { 𝐴 } → ( 1o = ( card ‘ 𝑦 ) ↔ 1o = ( card ‘ { 𝐴 } ) ) ) |
| 24 | sseq1 | ⊢ ( 𝑦 = { 𝐴 } → ( 𝑦 ⊆ suc 𝐴 ↔ { 𝐴 } ⊆ suc 𝐴 ) ) | |
| 25 | rexeq | ⊢ ( 𝑦 = { 𝐴 } → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) | |
| 26 | 25 | ralbidv | ⊢ ( 𝑦 = { 𝐴 } → ( ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) |
| 27 | 24 26 | anbi12d | ⊢ ( 𝑦 = { 𝐴 } → ( ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ( { 𝐴 } ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) ) |
| 28 | 23 27 | anbi12d | ⊢ ( 𝑦 = { 𝐴 } → ( ( 1o = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 1o = ( card ‘ { 𝐴 } ) ∧ ( { 𝐴 } ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) ) ) |
| 29 | 21 28 | spcev | ⊢ ( ( 1o = ( card ‘ { 𝐴 } ) ∧ ( { 𝐴 } ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ { 𝐴 } 𝑧 ⊆ 𝑤 ) ) → ∃ 𝑦 ( 1o = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 30 | 5 20 29 | syl2anc | ⊢ ( 𝐴 ∈ On → ∃ 𝑦 ( 1o = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 31 | 1oex | ⊢ 1o ∈ V | |
| 32 | eqeq1 | ⊢ ( 𝑥 = 1o → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 1o = ( card ‘ 𝑦 ) ) ) | |
| 33 | 32 | anbi1d | ⊢ ( 𝑥 = 1o → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 1o = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 34 | 33 | exbidv | ⊢ ( 𝑥 = 1o → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ∃ 𝑦 ( 1o = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 35 | 31 34 | elab | ⊢ ( 1o ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ↔ ∃ 𝑦 ( 1o = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 36 | 30 35 | sylibr | ⊢ ( 𝐴 ∈ On → 1o ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 37 | el1o | ⊢ ( 𝑣 ∈ 1o ↔ 𝑣 = ∅ ) | |
| 38 | eqcom | ⊢ ( ∅ = ( card ‘ 𝑦 ) ↔ ( card ‘ 𝑦 ) = ∅ ) | |
| 39 | vex | ⊢ 𝑦 ∈ V | |
| 40 | onssnum | ⊢ ( ( 𝑦 ∈ V ∧ 𝑦 ⊆ On ) → 𝑦 ∈ dom card ) | |
| 41 | 39 40 | mpan | ⊢ ( 𝑦 ⊆ On → 𝑦 ∈ dom card ) |
| 42 | cardnueq0 | ⊢ ( 𝑦 ∈ dom card → ( ( card ‘ 𝑦 ) = ∅ ↔ 𝑦 = ∅ ) ) | |
| 43 | 41 42 | syl | ⊢ ( 𝑦 ⊆ On → ( ( card ‘ 𝑦 ) = ∅ ↔ 𝑦 = ∅ ) ) |
| 44 | 38 43 | bitrid | ⊢ ( 𝑦 ⊆ On → ( ∅ = ( card ‘ 𝑦 ) ↔ 𝑦 = ∅ ) ) |
| 45 | 44 | biimpa | ⊢ ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) → 𝑦 = ∅ ) |
| 46 | rex0 | ⊢ ¬ ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 | |
| 47 | 46 | a1i | ⊢ ( 𝑧 ∈ suc 𝐴 → ¬ ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 ) |
| 48 | 47 | nrex | ⊢ ¬ ∃ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 |
| 49 | nsuceq0 | ⊢ suc 𝐴 ≠ ∅ | |
| 50 | r19.2z | ⊢ ( ( suc 𝐴 ≠ ∅ ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 ) → ∃ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 ) | |
| 51 | 49 50 | mpan | ⊢ ( ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 → ∃ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 ) |
| 52 | 48 51 | mto | ⊢ ¬ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 |
| 53 | rexeq | ⊢ ( 𝑦 = ∅ → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 ) ) | |
| 54 | 53 | ralbidv | ⊢ ( 𝑦 = ∅ → ( ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ ∅ 𝑧 ⊆ 𝑤 ) ) |
| 55 | 52 54 | mtbiri | ⊢ ( 𝑦 = ∅ → ¬ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) |
| 56 | 45 55 | syl | ⊢ ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) → ¬ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) |
| 57 | 56 | intnand | ⊢ ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) → ¬ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
| 58 | imnan | ⊢ ( ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) → ¬ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ¬ ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) | |
| 59 | 57 58 | mpbi | ⊢ ¬ ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) |
| 60 | onsuc | ⊢ ( 𝐴 ∈ On → suc 𝐴 ∈ On ) | |
| 61 | onss | ⊢ ( suc 𝐴 ∈ On → suc 𝐴 ⊆ On ) | |
| 62 | sstr | ⊢ ( ( 𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ⊆ On ) → 𝑦 ⊆ On ) | |
| 63 | 61 62 | sylan2 | ⊢ ( ( 𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ∈ On ) → 𝑦 ⊆ On ) |
| 64 | 60 63 | sylan2 | ⊢ ( ( 𝑦 ⊆ suc 𝐴 ∧ 𝐴 ∈ On ) → 𝑦 ⊆ On ) |
| 65 | 64 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ⊆ suc 𝐴 ) → 𝑦 ⊆ On ) |
| 66 | 65 | adantrr | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → 𝑦 ⊆ On ) |
| 67 | 66 | 3adant2 | ⊢ ( ( 𝐴 ∈ On ∧ ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → 𝑦 ⊆ On ) |
| 68 | simp2 | ⊢ ( ( 𝐴 ∈ On ∧ ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ∅ = ( card ‘ 𝑦 ) ) | |
| 69 | simp3 | ⊢ ( ( 𝐴 ∈ On ∧ ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) | |
| 70 | 67 68 69 | jca31 | ⊢ ( ( 𝐴 ∈ On ∧ ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 71 | 70 | 3expib | ⊢ ( 𝐴 ∈ On → ( ( ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → ( ( 𝑦 ⊆ On ∧ ∅ = ( card ‘ 𝑦 ) ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 72 | 59 71 | mtoi | ⊢ ( 𝐴 ∈ On → ¬ ( ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 73 | 72 | nexdv | ⊢ ( 𝐴 ∈ On → ¬ ∃ 𝑦 ( ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 74 | 0ex | ⊢ ∅ ∈ V | |
| 75 | eqeq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 = ( card ‘ 𝑦 ) ↔ ∅ = ( card ‘ 𝑦 ) ) ) | |
| 76 | 75 | anbi1d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 77 | 76 | exbidv | ⊢ ( 𝑥 = ∅ → ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ∃ 𝑦 ( ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 78 | 74 77 | elab | ⊢ ( ∅ ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ↔ ∃ 𝑦 ( ∅ = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) |
| 79 | 73 78 | sylnibr | ⊢ ( 𝐴 ∈ On → ¬ ∅ ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 80 | 79 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝑣 = ∅ ) → ¬ ∅ ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 81 | eleq1 | ⊢ ( 𝑣 = ∅ → ( 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ↔ ∅ ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) ) | |
| 82 | 81 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑣 = ∅ ) → ( 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ↔ ∅ ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) ) |
| 83 | 80 82 | mtbird | ⊢ ( ( 𝐴 ∈ On ∧ 𝑣 = ∅ ) → ¬ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 84 | 37 83 | sylan2b | ⊢ ( ( 𝐴 ∈ On ∧ 𝑣 ∈ 1o ) → ¬ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 85 | 84 | ralrimiva | ⊢ ( 𝐴 ∈ On → ∀ 𝑣 ∈ 1o ¬ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 86 | cardon | ⊢ ( card ‘ 𝑦 ) ∈ On | |
| 87 | eleq1 | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → ( 𝑥 ∈ On ↔ ( card ‘ 𝑦 ) ∈ On ) ) | |
| 88 | 86 87 | mpbiri | ⊢ ( 𝑥 = ( card ‘ 𝑦 ) → 𝑥 ∈ On ) |
| 89 | 88 | adantr | ⊢ ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → 𝑥 ∈ On ) |
| 90 | 89 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) → 𝑥 ∈ On ) |
| 91 | 90 | abssi | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ On |
| 92 | oneqmini | ⊢ ( { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ On → ( ( 1o ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ∧ ∀ 𝑣 ∈ 1o ¬ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) → 1o = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) ) | |
| 93 | 91 92 | ax-mp | ⊢ ( ( 1o ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ∧ ∀ 𝑣 ∈ 1o ¬ 𝑣 ∈ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) → 1o = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 94 | 36 85 93 | syl2anc | ⊢ ( 𝐴 ∈ On → 1o = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ suc 𝐴 ∧ ∀ 𝑧 ∈ suc 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 95 | 3 94 | eqtr4d | ⊢ ( 𝐴 ∈ On → ( cf ‘ suc 𝐴 ) = 1o ) |