This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection (infimum) of a nonempty class of ordinal numbers belongs to the class. Compare Exercise 4 of TakeutiZaring p. 45. (Contributed by NM, 31-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onint | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon | ⊢ Ord On | |
| 2 | tz7.5 | ⊢ ( ( Ord On ∧ 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) | |
| 3 | 1 2 | mp3an1 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ ) |
| 4 | ssel | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) ) | |
| 5 | 4 | imdistani | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) |
| 6 | ssel | ⊢ ( 𝐴 ⊆ On → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ On ) ) | |
| 7 | ontri1 | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑥 ⊆ 𝑧 ↔ ¬ 𝑧 ∈ 𝑥 ) ) | |
| 8 | ssel | ⊢ ( 𝑥 ⊆ 𝑧 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) | |
| 9 | 7 8 | biimtrrdi | ⊢ ( ( 𝑥 ∈ On ∧ 𝑧 ∈ On ) → ( ¬ 𝑧 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) |
| 10 | 9 | ex | ⊢ ( 𝑥 ∈ On → ( 𝑧 ∈ On → ( ¬ 𝑧 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) ) |
| 11 | 6 10 | sylan9 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) → ( 𝑧 ∈ 𝐴 → ( ¬ 𝑧 ∈ 𝑥 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) ) |
| 12 | 11 | com4r | ⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) → ( 𝑧 ∈ 𝐴 → ( ¬ 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) ) ) |
| 13 | 12 | imp31 | ⊢ ( ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) ∧ 𝑧 ∈ 𝐴 ) → ( ¬ 𝑧 ∈ 𝑥 → 𝑦 ∈ 𝑧 ) ) |
| 14 | 13 | ralimdva | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) → ( ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑥 → ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) ) |
| 15 | disj | ⊢ ( ( 𝐴 ∩ 𝑥 ) = ∅ ↔ ∀ 𝑧 ∈ 𝐴 ¬ 𝑧 ∈ 𝑥 ) | |
| 16 | vex | ⊢ 𝑦 ∈ V | |
| 17 | 16 | elint2 | ⊢ ( 𝑦 ∈ ∩ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) |
| 18 | 14 15 17 | 3imtr4g | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ On ) ) → ( ( 𝐴 ∩ 𝑥 ) = ∅ → 𝑦 ∈ ∩ 𝐴 ) ) |
| 19 | 5 18 | sylan2 | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝐴 ∩ 𝑥 ) = ∅ → 𝑦 ∈ ∩ 𝐴 ) ) |
| 20 | 19 | exp32 | ⊢ ( 𝑦 ∈ 𝑥 → ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → 𝑦 ∈ ∩ 𝐴 ) ) ) ) |
| 21 | 20 | com4l | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∩ 𝐴 ) ) ) ) |
| 22 | 21 | imp32 | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ ∩ 𝐴 ) ) |
| 23 | 22 | ssrdv | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → 𝑥 ⊆ ∩ 𝐴 ) |
| 24 | intss1 | ⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥 ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ∩ 𝐴 ⊆ 𝑥 ) |
| 26 | 23 25 | eqssd | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → 𝑥 = ∩ 𝐴 ) |
| 27 | 26 | eleq1d | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ( 𝑥 ∈ 𝐴 ↔ ∩ 𝐴 ∈ 𝐴 ) ) |
| 28 | 27 | biimpd | ⊢ ( ( 𝐴 ⊆ On ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝐴 ∩ 𝑥 ) = ∅ ) ) → ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ 𝐴 ) ) |
| 29 | 28 | exp32 | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ 𝐴 ) ) ) ) |
| 30 | 29 | com34 | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ∩ 𝐴 ∈ 𝐴 ) ) ) ) |
| 31 | 30 | pm2.43d | ⊢ ( 𝐴 ⊆ On → ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∩ 𝑥 ) = ∅ → ∩ 𝐴 ∈ 𝐴 ) ) ) |
| 32 | 31 | rexlimdv | ⊢ ( 𝐴 ⊆ On → ( ∃ 𝑥 ∈ 𝐴 ( 𝐴 ∩ 𝑥 ) = ∅ → ∩ 𝐴 ∈ 𝐴 ) ) |
| 33 | 3 32 | syl5 | ⊢ ( 𝐴 ⊆ On → ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) ) |
| 34 | 33 | anabsi5 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ≠ ∅ ) → ∩ 𝐴 ∈ 𝐴 ) |