This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: All subsets of the ordinals are numerable. (Contributed by Mario Carneiro, 12-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onssnum | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → 𝐴 ∈ dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | ⊢ ( 𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V ) | |
| 2 | ssorduni | ⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) | |
| 3 | elong | ⊢ ( ∪ 𝐴 ∈ V → ( ∪ 𝐴 ∈ On ↔ Ord ∪ 𝐴 ) ) | |
| 4 | 3 | biimpar | ⊢ ( ( ∪ 𝐴 ∈ V ∧ Ord ∪ 𝐴 ) → ∪ 𝐴 ∈ On ) |
| 5 | 1 2 4 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → ∪ 𝐴 ∈ On ) |
| 6 | onsuc | ⊢ ( ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ On ) | |
| 7 | onenon | ⊢ ( suc ∪ 𝐴 ∈ On → suc ∪ 𝐴 ∈ dom card ) | |
| 8 | 5 6 7 | 3syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → suc ∪ 𝐴 ∈ dom card ) |
| 9 | onsucuni | ⊢ ( 𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → 𝐴 ⊆ suc ∪ 𝐴 ) |
| 11 | ssnum | ⊢ ( ( suc ∪ 𝐴 ∈ dom card ∧ 𝐴 ⊆ suc ∪ 𝐴 ) → 𝐴 ∈ dom card ) | |
| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ On ) → 𝐴 ∈ dom card ) |