This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection of a nonempty class exists. Exercise 5 of TakeutiZaring p. 44 and its converse. (Contributed by NM, 13-Aug-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intex | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 2 | intss1 | ⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥 ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex | ⊢ ( ∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V ) |
| 5 | 2 4 | syl | ⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V ) |
| 7 | 1 6 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ∈ V ) |
| 8 | vprc | ⊢ ¬ V ∈ V | |
| 9 | inteq | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = ∩ ∅ ) | |
| 10 | int0 | ⊢ ∩ ∅ = V | |
| 11 | 9 10 | eqtrdi | ⊢ ( 𝐴 = ∅ → ∩ 𝐴 = V ) |
| 12 | 11 | eleq1d | ⊢ ( 𝐴 = ∅ → ( ∩ 𝐴 ∈ V ↔ V ∈ V ) ) |
| 13 | 8 12 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V ) |
| 14 | 13 | necon2ai | ⊢ ( ∩ 𝐴 ∈ V → 𝐴 ≠ ∅ ) |
| 15 | 7 14 | impbii | ⊢ ( 𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V ) |