This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An order isomorphism is a homeomorphism on the respective order topologies. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ordthmeo.1 | |- X = dom R |
|
| ordthmeo.2 | |- Y = dom S |
||
| Assertion | ordthmeo | |- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> F e. ( ( ordTop ` R ) Homeo ( ordTop ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordthmeo.1 | |- X = dom R |
|
| 2 | ordthmeo.2 | |- Y = dom S |
|
| 3 | 1 2 | ordthmeolem | |- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> F e. ( ( ordTop ` R ) Cn ( ordTop ` S ) ) ) |
| 4 | isocnv | |- ( F Isom R , S ( X , Y ) -> `' F Isom S , R ( Y , X ) ) |
|
| 5 | 2 1 | ordthmeolem | |- ( ( S e. W /\ R e. V /\ `' F Isom S , R ( Y , X ) ) -> `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) |
| 6 | 5 | 3com12 | |- ( ( R e. V /\ S e. W /\ `' F Isom S , R ( Y , X ) ) -> `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) |
| 7 | 4 6 | syl3an3 | |- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) |
| 8 | ishmeo | |- ( F e. ( ( ordTop ` R ) Homeo ( ordTop ` S ) ) <-> ( F e. ( ( ordTop ` R ) Cn ( ordTop ` S ) ) /\ `' F e. ( ( ordTop ` S ) Cn ( ordTop ` R ) ) ) ) |
|
| 9 | 3 7 8 | sylanbrc | |- ( ( R e. V /\ S e. W /\ F Isom R , S ( X , Y ) ) -> F e. ( ( ordTop ` R ) Homeo ( ordTop ` S ) ) ) |