This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a bijection from [ 0 , 1 ] to [ 0 , +oo ] . (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iccpnfhmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| Assertion | iccpnfcnv | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpnfhmeo.f | |- F = ( x e. ( 0 [,] 1 ) |-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) |
|
| 2 | 0xr | |- 0 e. RR* |
|
| 3 | pnfxr | |- +oo e. RR* |
|
| 4 | 0lepnf | |- 0 <_ +oo |
|
| 5 | ubicc2 | |- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> +oo e. ( 0 [,] +oo ) ) |
|
| 6 | 2 3 4 5 | mp3an | |- +oo e. ( 0 [,] +oo ) |
| 7 | 6 | a1i | |- ( ( x e. ( 0 [,] 1 ) /\ x = 1 ) -> +oo e. ( 0 [,] +oo ) ) |
| 8 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 9 | 1xr | |- 1 e. RR* |
|
| 10 | 0le1 | |- 0 <_ 1 |
|
| 11 | snunico | |- ( ( 0 e. RR* /\ 1 e. RR* /\ 0 <_ 1 ) -> ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) ) |
|
| 12 | 2 9 10 11 | mp3an | |- ( ( 0 [,) 1 ) u. { 1 } ) = ( 0 [,] 1 ) |
| 13 | 12 | eleq2i | |- ( x e. ( ( 0 [,) 1 ) u. { 1 } ) <-> x e. ( 0 [,] 1 ) ) |
| 14 | elun | |- ( x e. ( ( 0 [,) 1 ) u. { 1 } ) <-> ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) ) |
|
| 15 | 13 14 | bitr3i | |- ( x e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) ) |
| 16 | pm2.53 | |- ( ( x e. ( 0 [,) 1 ) \/ x e. { 1 } ) -> ( -. x e. ( 0 [,) 1 ) -> x e. { 1 } ) ) |
|
| 17 | 15 16 | sylbi | |- ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 [,) 1 ) -> x e. { 1 } ) ) |
| 18 | elsni | |- ( x e. { 1 } -> x = 1 ) |
|
| 19 | 17 18 | syl6 | |- ( x e. ( 0 [,] 1 ) -> ( -. x e. ( 0 [,) 1 ) -> x = 1 ) ) |
| 20 | 19 | con1d | |- ( x e. ( 0 [,] 1 ) -> ( -. x = 1 -> x e. ( 0 [,) 1 ) ) ) |
| 21 | 20 | imp | |- ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> x e. ( 0 [,) 1 ) ) |
| 22 | eqid | |- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) |
|
| 23 | 22 | icopnfcnv | |- ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) ) |
| 24 | 23 | simpli | |- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) |
| 25 | f1of | |- ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) -> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) ) |
|
| 26 | 24 25 | ax-mp | |- ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) |
| 27 | 22 | fmpt | |- ( A. x e. ( 0 [,) 1 ) ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) <-> ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) --> ( 0 [,) +oo ) ) |
| 28 | 26 27 | mpbir | |- A. x e. ( 0 [,) 1 ) ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) |
| 29 | 28 | rspec | |- ( x e. ( 0 [,) 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) ) |
| 30 | 21 29 | syl | |- ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,) +oo ) ) |
| 31 | 8 30 | sselid | |- ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. ( 0 [,] +oo ) ) |
| 32 | 7 31 | ifclda | |- ( x e. ( 0 [,] 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. ( 0 [,] +oo ) ) |
| 33 | 32 | adantl | |- ( ( T. /\ x e. ( 0 [,] 1 ) ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. ( 0 [,] +oo ) ) |
| 34 | 1elunit | |- 1 e. ( 0 [,] 1 ) |
|
| 35 | 34 | a1i | |- ( ( y e. ( 0 [,] +oo ) /\ y = +oo ) -> 1 e. ( 0 [,] 1 ) ) |
| 36 | icossicc | |- ( 0 [,) 1 ) C_ ( 0 [,] 1 ) |
|
| 37 | snunico | |- ( ( 0 e. RR* /\ +oo e. RR* /\ 0 <_ +oo ) -> ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) ) |
|
| 38 | 2 3 4 37 | mp3an | |- ( ( 0 [,) +oo ) u. { +oo } ) = ( 0 [,] +oo ) |
| 39 | 38 | eleq2i | |- ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> y e. ( 0 [,] +oo ) ) |
| 40 | elun | |- ( y e. ( ( 0 [,) +oo ) u. { +oo } ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) |
|
| 41 | 39 40 | bitr3i | |- ( y e. ( 0 [,] +oo ) <-> ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) ) |
| 42 | pm2.53 | |- ( ( y e. ( 0 [,) +oo ) \/ y e. { +oo } ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) |
|
| 43 | 41 42 | sylbi | |- ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y e. { +oo } ) ) |
| 44 | elsni | |- ( y e. { +oo } -> y = +oo ) |
|
| 45 | 43 44 | syl6 | |- ( y e. ( 0 [,] +oo ) -> ( -. y e. ( 0 [,) +oo ) -> y = +oo ) ) |
| 46 | 45 | con1d | |- ( y e. ( 0 [,] +oo ) -> ( -. y = +oo -> y e. ( 0 [,) +oo ) ) ) |
| 47 | 46 | imp | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> y e. ( 0 [,) +oo ) ) |
| 48 | f1ocnv | |- ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) -> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) -1-1-onto-> ( 0 [,) 1 ) ) |
|
| 49 | f1of | |- ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) -1-1-onto-> ( 0 [,) 1 ) -> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) ) |
|
| 50 | 24 48 49 | mp2b | |- `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) |
| 51 | 23 | simpri | |- `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) = ( y e. ( 0 [,) +oo ) |-> ( y / ( 1 + y ) ) ) |
| 52 | 51 | fmpt | |- ( A. y e. ( 0 [,) +oo ) ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) +oo ) --> ( 0 [,) 1 ) ) |
| 53 | 50 52 | mpbir | |- A. y e. ( 0 [,) +oo ) ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) |
| 54 | 53 | rspec | |- ( y e. ( 0 [,) +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) ) |
| 55 | 47 54 | syl | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) ) |
| 56 | 36 55 | sselid | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. ( 0 [,] 1 ) ) |
| 57 | 35 56 | ifclda | |- ( y e. ( 0 [,] +oo ) -> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) e. ( 0 [,] 1 ) ) |
| 58 | 57 | adantl | |- ( ( T. /\ y e. ( 0 [,] +oo ) ) -> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) e. ( 0 [,] 1 ) ) |
| 59 | eqeq2 | |- ( 1 = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( x = 1 <-> x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |
|
| 60 | 59 | bibi1d | |- ( 1 = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( ( x = 1 <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) <-> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) |
| 61 | eqeq2 | |- ( ( y / ( 1 + y ) ) = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( x = ( y / ( 1 + y ) ) <-> x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |
|
| 62 | 61 | bibi1d | |- ( ( y / ( 1 + y ) ) = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) <-> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) |
| 63 | simpr | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y = +oo ) |
|
| 64 | iftrue | |- ( x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = +oo ) |
|
| 65 | 64 | eqeq2d | |- ( x = 1 -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) <-> y = +oo ) ) |
| 66 | 63 65 | syl5ibrcom | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 1 -> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
| 67 | pnfnre | |- +oo e/ RR |
|
| 68 | neleq1 | |- ( y = +oo -> ( y e/ RR <-> +oo e/ RR ) ) |
|
| 69 | 68 | adantl | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y e/ RR <-> +oo e/ RR ) ) |
| 70 | 67 69 | mpbiri | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> y e/ RR ) |
| 71 | neleq1 | |- ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y e/ RR <-> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR ) ) |
|
| 72 | 70 71 | syl5ibcom | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR ) ) |
| 73 | df-nel | |- ( if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR <-> -. if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) |
|
| 74 | iffalse | |- ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
|
| 75 | 74 | adantl | |- ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) = ( x / ( 1 - x ) ) ) |
| 76 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 77 | 76 30 | sselid | |- ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> ( x / ( 1 - x ) ) e. RR ) |
| 78 | 75 77 | eqeltrd | |- ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) |
| 79 | 78 | ex | |- ( x e. ( 0 [,] 1 ) -> ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) ) |
| 80 | 79 | ad2antrr | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. x = 1 -> if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR ) ) |
| 81 | 80 | con1d | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( -. if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e. RR -> x = 1 ) ) |
| 82 | 73 81 | biimtrid | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) e/ RR -> x = 1 ) ) |
| 83 | 72 82 | syld | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> x = 1 ) ) |
| 84 | 66 83 | impbid | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ y = +oo ) -> ( x = 1 <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
| 85 | eqeq2 | |- ( +oo = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y = +oo <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
|
| 86 | 85 | bibi2d | |- ( +oo = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = +oo ) <-> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) |
| 87 | eqeq2 | |- ( ( x / ( 1 - x ) ) = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( y = ( x / ( 1 - x ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
|
| 88 | 87 | bibi2d | |- ( ( x / ( 1 - x ) ) = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) -> ( ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) <-> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) ) |
| 89 | 0re | |- 0 e. RR |
|
| 90 | elico2 | |- ( ( 0 e. RR /\ 1 e. RR* ) -> ( ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) ) |
|
| 91 | 89 9 90 | mp2an | |- ( ( y / ( 1 + y ) ) e. ( 0 [,) 1 ) <-> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) |
| 92 | 55 91 | sylib | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( ( y / ( 1 + y ) ) e. RR /\ 0 <_ ( y / ( 1 + y ) ) /\ ( y / ( 1 + y ) ) < 1 ) ) |
| 93 | 92 | simp1d | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) e. RR ) |
| 94 | 92 | simp3d | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> ( y / ( 1 + y ) ) < 1 ) |
| 95 | 93 94 | gtned | |- ( ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) -> 1 =/= ( y / ( 1 + y ) ) ) |
| 96 | 95 | adantll | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> 1 =/= ( y / ( 1 + y ) ) ) |
| 97 | 96 | neneqd | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> -. 1 = ( y / ( 1 + y ) ) ) |
| 98 | eqeq1 | |- ( x = 1 -> ( x = ( y / ( 1 + y ) ) <-> 1 = ( y / ( 1 + y ) ) ) ) |
|
| 99 | 98 | notbid | |- ( x = 1 -> ( -. x = ( y / ( 1 + y ) ) <-> -. 1 = ( y / ( 1 + y ) ) ) ) |
| 100 | 97 99 | syl5ibrcom | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = 1 -> -. x = ( y / ( 1 + y ) ) ) ) |
| 101 | 100 | imp | |- ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> -. x = ( y / ( 1 + y ) ) ) |
| 102 | simplr | |- ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> -. y = +oo ) |
|
| 103 | 101 102 | 2falsed | |- ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ x = 1 ) -> ( x = ( y / ( 1 + y ) ) <-> y = +oo ) ) |
| 104 | f1ocnvfvb | |- ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) : ( 0 [,) 1 ) -1-1-onto-> ( 0 [,) +oo ) /\ x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x ) ) |
|
| 105 | 24 104 | mp3an1 | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x ) ) |
| 106 | simpl | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> x e. ( 0 [,) 1 ) ) |
|
| 107 | ovex | |- ( x / ( 1 - x ) ) e. _V |
|
| 108 | 22 | fvmpt2 | |- ( ( x e. ( 0 [,) 1 ) /\ ( x / ( 1 - x ) ) e. _V ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = ( x / ( 1 - x ) ) ) |
| 109 | 106 107 108 | sylancl | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = ( x / ( 1 - x ) ) ) |
| 110 | 109 | eqeq1d | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` x ) = y <-> ( x / ( 1 - x ) ) = y ) ) |
| 111 | simpr | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> y e. ( 0 [,) +oo ) ) |
|
| 112 | ovex | |- ( y / ( 1 + y ) ) e. _V |
|
| 113 | 51 | fvmpt2 | |- ( ( y e. ( 0 [,) +oo ) /\ ( y / ( 1 + y ) ) e. _V ) -> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = ( y / ( 1 + y ) ) ) |
| 114 | 111 112 113 | sylancl | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = ( y / ( 1 + y ) ) ) |
| 115 | 114 | eqeq1d | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( `' ( x e. ( 0 [,) 1 ) |-> ( x / ( 1 - x ) ) ) ` y ) = x <-> ( y / ( 1 + y ) ) = x ) ) |
| 116 | 105 110 115 | 3bitr3rd | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( ( y / ( 1 + y ) ) = x <-> ( x / ( 1 - x ) ) = y ) ) |
| 117 | eqcom | |- ( x = ( y / ( 1 + y ) ) <-> ( y / ( 1 + y ) ) = x ) |
|
| 118 | eqcom | |- ( y = ( x / ( 1 - x ) ) <-> ( x / ( 1 - x ) ) = y ) |
|
| 119 | 116 117 118 | 3bitr4g | |- ( ( x e. ( 0 [,) 1 ) /\ y e. ( 0 [,) +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) |
| 120 | 21 47 119 | syl2an | |- ( ( ( x e. ( 0 [,] 1 ) /\ -. x = 1 ) /\ ( y e. ( 0 [,] +oo ) /\ -. y = +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) |
| 121 | 120 | an4s | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ ( -. x = 1 /\ -. y = +oo ) ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) |
| 122 | 121 | anass1rs | |- ( ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) /\ -. x = 1 ) -> ( x = ( y / ( 1 + y ) ) <-> y = ( x / ( 1 - x ) ) ) ) |
| 123 | 86 88 103 122 | ifbothda | |- ( ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) /\ -. y = +oo ) -> ( x = ( y / ( 1 + y ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
| 124 | 60 62 84 123 | ifbothda | |- ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) -> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
| 125 | 124 | adantl | |- ( ( T. /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] +oo ) ) ) -> ( x = if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) <-> y = if ( x = 1 , +oo , ( x / ( 1 - x ) ) ) ) ) |
| 126 | 1 33 58 125 | f1ocnv2d | |- ( T. -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) ) |
| 127 | 126 | mptru | |- ( F : ( 0 [,] 1 ) -1-1-onto-> ( 0 [,] +oo ) /\ `' F = ( y e. ( 0 [,] +oo ) |-> if ( y = +oo , 1 , ( y / ( 1 + y ) ) ) ) ) |