This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to write a strictly increasing function on the reals. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leiso | |- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , < ( A , B ) <-> F Isom <_ , <_ ( A , B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-le | |- <_ = ( ( RR* X. RR* ) \ `' < ) |
|
| 2 | 1 | ineq1i | |- ( <_ i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) \ `' < ) i^i ( A X. A ) ) |
| 3 | indif1 | |- ( ( ( RR* X. RR* ) \ `' < ) i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ `' < ) |
|
| 4 | 2 3 | eqtri | |- ( <_ i^i ( A X. A ) ) = ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ `' < ) |
| 5 | xpss12 | |- ( ( A C_ RR* /\ A C_ RR* ) -> ( A X. A ) C_ ( RR* X. RR* ) ) |
|
| 6 | 5 | anidms | |- ( A C_ RR* -> ( A X. A ) C_ ( RR* X. RR* ) ) |
| 7 | sseqin2 | |- ( ( A X. A ) C_ ( RR* X. RR* ) <-> ( ( RR* X. RR* ) i^i ( A X. A ) ) = ( A X. A ) ) |
|
| 8 | 6 7 | sylib | |- ( A C_ RR* -> ( ( RR* X. RR* ) i^i ( A X. A ) ) = ( A X. A ) ) |
| 9 | 8 | difeq1d | |- ( A C_ RR* -> ( ( ( RR* X. RR* ) i^i ( A X. A ) ) \ `' < ) = ( ( A X. A ) \ `' < ) ) |
| 10 | 4 9 | eqtr2id | |- ( A C_ RR* -> ( ( A X. A ) \ `' < ) = ( <_ i^i ( A X. A ) ) ) |
| 11 | isoeq2 | |- ( ( ( A X. A ) \ `' < ) = ( <_ i^i ( A X. A ) ) -> ( F Isom ( ( A X. A ) \ `' < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) |
|
| 12 | 10 11 | syl | |- ( A C_ RR* -> ( F Isom ( ( A X. A ) \ `' < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) ) ) |
| 13 | 1 | ineq1i | |- ( <_ i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) \ `' < ) i^i ( B X. B ) ) |
| 14 | indif1 | |- ( ( ( RR* X. RR* ) \ `' < ) i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) |
|
| 15 | 13 14 | eqtri | |- ( <_ i^i ( B X. B ) ) = ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) |
| 16 | xpss12 | |- ( ( B C_ RR* /\ B C_ RR* ) -> ( B X. B ) C_ ( RR* X. RR* ) ) |
|
| 17 | 16 | anidms | |- ( B C_ RR* -> ( B X. B ) C_ ( RR* X. RR* ) ) |
| 18 | sseqin2 | |- ( ( B X. B ) C_ ( RR* X. RR* ) <-> ( ( RR* X. RR* ) i^i ( B X. B ) ) = ( B X. B ) ) |
|
| 19 | 17 18 | sylib | |- ( B C_ RR* -> ( ( RR* X. RR* ) i^i ( B X. B ) ) = ( B X. B ) ) |
| 20 | 19 | difeq1d | |- ( B C_ RR* -> ( ( ( RR* X. RR* ) i^i ( B X. B ) ) \ `' < ) = ( ( B X. B ) \ `' < ) ) |
| 21 | 15 20 | eqtr2id | |- ( B C_ RR* -> ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) ) |
| 22 | isoeq3 | |- ( ( ( B X. B ) \ `' < ) = ( <_ i^i ( B X. B ) ) -> ( F Isom ( <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) |
|
| 23 | 21 22 | syl | |- ( B C_ RR* -> ( F Isom ( <_ i^i ( A X. A ) ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) |
| 24 | 12 23 | sylan9bb | |- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom ( ( A X. A ) \ `' < ) , ( ( B X. B ) \ `' < ) ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) ) |
| 25 | isocnv2 | |- ( F Isom < , < ( A , B ) <-> F Isom `' < , `' < ( A , B ) ) |
|
| 26 | eqid | |- ( ( A X. A ) \ `' < ) = ( ( A X. A ) \ `' < ) |
|
| 27 | eqid | |- ( ( B X. B ) \ `' < ) = ( ( B X. B ) \ `' < ) |
|
| 28 | 26 27 | isocnv3 | |- ( F Isom `' < , `' < ( A , B ) <-> F Isom ( ( A X. A ) \ `' < ) , ( ( B X. B ) \ `' < ) ( A , B ) ) |
| 29 | 25 28 | bitri | |- ( F Isom < , < ( A , B ) <-> F Isom ( ( A X. A ) \ `' < ) , ( ( B X. B ) \ `' < ) ( A , B ) ) |
| 30 | isores1 | |- ( F Isom <_ , <_ ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , <_ ( A , B ) ) |
|
| 31 | isores2 | |- ( F Isom ( <_ i^i ( A X. A ) ) , <_ ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) |
|
| 32 | 30 31 | bitri | |- ( F Isom <_ , <_ ( A , B ) <-> F Isom ( <_ i^i ( A X. A ) ) , ( <_ i^i ( B X. B ) ) ( A , B ) ) |
| 33 | 24 29 32 | 3bitr4g | |- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , < ( A , B ) <-> F Isom <_ , <_ ( A , B ) ) ) |