This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of isorel for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015) (Revised by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leisorel | |- ( ( F Isom < , < ( A , B ) /\ ( A C_ RR* /\ B C_ RR* ) /\ ( C e. A /\ D e. A ) ) -> ( C <_ D <-> ( F ` C ) <_ ( F ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leiso | |- ( ( A C_ RR* /\ B C_ RR* ) -> ( F Isom < , < ( A , B ) <-> F Isom <_ , <_ ( A , B ) ) ) |
|
| 2 | 1 | biimpcd | |- ( F Isom < , < ( A , B ) -> ( ( A C_ RR* /\ B C_ RR* ) -> F Isom <_ , <_ ( A , B ) ) ) |
| 3 | isorel | |- ( ( F Isom <_ , <_ ( A , B ) /\ ( C e. A /\ D e. A ) ) -> ( C <_ D <-> ( F ` C ) <_ ( F ` D ) ) ) |
|
| 4 | 3 | ex | |- ( F Isom <_ , <_ ( A , B ) -> ( ( C e. A /\ D e. A ) -> ( C <_ D <-> ( F ` C ) <_ ( F ` D ) ) ) ) |
| 5 | 2 4 | syl6 | |- ( F Isom < , < ( A , B ) -> ( ( A C_ RR* /\ B C_ RR* ) -> ( ( C e. A /\ D e. A ) -> ( C <_ D <-> ( F ` C ) <_ ( F ` D ) ) ) ) ) |
| 6 | 5 | 3imp | |- ( ( F Isom < , < ( A , B ) /\ ( A C_ RR* /\ B C_ RR* ) /\ ( C e. A /\ D e. A ) ) -> ( C <_ D <-> ( F ` C ) <_ ( F ` D ) ) ) |