This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997) (Proof shortened by Andrew Salmon, 25-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | soss | |- ( A C_ B -> ( R Or B -> R Or A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poss | |- ( A C_ B -> ( R Po B -> R Po A ) ) |
|
| 2 | ss2ralv | |- ( A C_ B -> ( A. x e. B A. y e. B ( x R y \/ x = y \/ y R x ) -> A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 3 | 1 2 | anim12d | |- ( A C_ B -> ( ( R Po B /\ A. x e. B A. y e. B ( x R y \/ x = y \/ y R x ) ) -> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) ) |
| 4 | df-so | |- ( R Or B <-> ( R Po B /\ A. x e. B A. y e. B ( x R y \/ x = y \/ y R x ) ) ) |
|
| 5 | df-so | |- ( R Or A <-> ( R Po A /\ A. x e. A A. y e. A ( x R y \/ x = y \/ y R x ) ) ) |
|
| 6 | 3 4 5 | 3imtr4g | |- ( A C_ B -> ( R Or B -> R Or A ) ) |