This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 10-May-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lenegcon1 | |- ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 2 | leneg | |- ( ( -u A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ -u -u A ) ) |
| 4 | recn | |- ( A e. RR -> A e. CC ) |
|
| 5 | 4 | negnegd | |- ( A e. RR -> -u -u A = A ) |
| 6 | 5 | breq2d | |- ( A e. RR -> ( -u B <_ -u -u A <-> -u B <_ A ) ) |
| 7 | 6 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( -u B <_ -u -u A <-> -u B <_ A ) ) |
| 8 | 3 7 | bitrd | |- ( ( A e. RR /\ B e. RR ) -> ( -u A <_ B <-> -u B <_ A ) ) |