This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isorel | |- ( ( H Isom R , S ( A , B ) /\ ( C e. A /\ D e. A ) ) -> ( C R D <-> ( H ` C ) S ( H ` D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-isom | |- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) ) |
|
| 2 | 1 | simprbi | |- ( H Isom R , S ( A , B ) -> A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) ) |
| 3 | breq1 | |- ( x = C -> ( x R y <-> C R y ) ) |
|
| 4 | fveq2 | |- ( x = C -> ( H ` x ) = ( H ` C ) ) |
|
| 5 | 4 | breq1d | |- ( x = C -> ( ( H ` x ) S ( H ` y ) <-> ( H ` C ) S ( H ` y ) ) ) |
| 6 | 3 5 | bibi12d | |- ( x = C -> ( ( x R y <-> ( H ` x ) S ( H ` y ) ) <-> ( C R y <-> ( H ` C ) S ( H ` y ) ) ) ) |
| 7 | breq2 | |- ( y = D -> ( C R y <-> C R D ) ) |
|
| 8 | fveq2 | |- ( y = D -> ( H ` y ) = ( H ` D ) ) |
|
| 9 | 8 | breq2d | |- ( y = D -> ( ( H ` C ) S ( H ` y ) <-> ( H ` C ) S ( H ` D ) ) ) |
| 10 | 7 9 | bibi12d | |- ( y = D -> ( ( C R y <-> ( H ` C ) S ( H ` y ) ) <-> ( C R D <-> ( H ` C ) S ( H ` D ) ) ) ) |
| 11 | 6 10 | rspc2v | |- ( ( C e. A /\ D e. A ) -> ( A. x e. A A. y e. A ( x R y <-> ( H ` x ) S ( H ` y ) ) -> ( C R D <-> ( H ` C ) S ( H ` D ) ) ) ) |
| 12 | 2 11 | mpan9 | |- ( ( H Isom R , S ( A , B ) /\ ( C e. A /\ D e. A ) ) -> ( C R D <-> ( H ` C ) S ( H ` D ) ) ) |